基于压缩感知的无线传感器网络数据融合算法
作者:
基金项目:

国家重大仪器设备开发专项(2013YQ030595)


Data Fusion Based on Compressed Sensing in Wireless Sensor Networks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    无线传感器网络中存在大量的数据冗余,数据融合技术通过对采样数据进行压缩,消除冗余,有效的减少了节点发送的数据量,延长传感器网络的寿命. 提出了压缩感知与数据转发相结合的数据融合算法,在网络采样数据收集的过程中根据节点的子节点个数选择利用压缩感知对数据进行压缩还是直接对数据进行数据转发. 仿真结果表明,和基于压缩感知的数据融合算法相比,数据转发与压缩感知相结合的数据融合算法,有效地在平衡节点间负载的同时减少节点的发送量.

    Abstract:

    There are a lot of data redundancy in wireless sensor networks. By compressing the original sampling data, the data fusion technology eliminates redundancies in data, reduces the amount of data sent by nodes effectively and prolongs lifetime of sensor networks. This paper proposed a data fusion algorithm that combined data forwarding and compressed sensing. During the process of collecting sampling data in sensor networks, the algorithm selects using compressed sensing to compress original sampling data or simply storing and forwarding sampling data according to the amount of nodes' child nodes. Simulations indicate that compared with the data fusion algorithm based on compressed sensing, the data fusion algorithm that combined data forwarding and compressed sensing achieved both network load balance and data compression effectively.

    参考文献
    1 任丰原,黄海宁,林闯.无线传感器网络.软件学报,2003, 14(7):1282-1291.
    2 Boulis A, Ganeriwal S, Srivastava MB. Aggregation in sensor networks: an energy-accuracy trade-off. Ad Hoc Networks, 2003, 1(2): 317-331.
    3 康健,左宪章,唐力伟,等.无线传感器网络数据融合技术.计算机科学,2010,37(4):31-35.
    4 Baraniuk RG. Compressive sensing. Signal Processing Magazine, 2007, 24(4): 118-121.
    5 Donoho DL, Elad M, Temlyakov VN. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. on Information Theory, 2006, 52(1): 6-18.
    6 Candes EJ, Tao T. Near-optimal signal recovery from random projections. Universal encoding strategies. IEEE Trans. on Information Theory, 2006, 52(12): 5406-5425.
    7 Haupt J, Bajwa WU, Rabbat M, et al. Compressed sensing for networked data. Signal Processing Magazine, IEEE, 2008, 25(2): 92-101.
    8 Xie D, Zhou Q, Liu J, et al. A Chain-Based Data Gathering Protocol under Compressive Sensing Framework for Wireless Sensor Networks. Computational and Information Sciences (ICCIS), 2013 Fifth International Conference on. IEEE. 2013. 1479-1482.
    9 Caione C, Brunelli D, Benini L. Distributed compressive sampling for lifetime optimization in dense wireless sensor networks. IEEE Trans. on Industrial Informatics, 2012, 8(1): 30-40.
    10 Donoho DL. Compressed sensing. IEEE Trans. on Information Theory, 2006, 52(4) :1289-1306.
    11 Chen F, Chandrakasan AP, Stojanovic VM. Design and analysis of a hardware-efficient compressed sensing archi- tecture for data compression in wireless sensors. IEEE Journal of Solid-State Circuits, 2012, 47(3): 744-756.
    12 李树涛,魏丹.压缩传感综述.自动化学报,2009, 35(11):1369-1377.
    13 张明,朱俊平,蔡骋.WSN中基于压缩感知的数据收集案.计算机工程,2012,38(20):68-71.
    14 Plan Y, Vershynin R. One-bit compressed sensing by linear programming. Communications on Pure and Applied Mathematics, 2013, 66(8): 1275-1297.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

史久根,张加广.基于压缩感知的无线传感器网络数据融合算法.计算机系统应用,2014,23(10):178-182

复制
分享
文章指标
  • 点击次数:1289
  • 下载次数: 3286
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-02-22
  • 最后修改日期:2014-03-28
  • 在线发布日期: 2014-10-17
文章二维码
您是第12463808位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号