基于ViBe算法的改进背景减去法
作者:
基金项目:

广东省自然科学基金(S2011040004273)


Improved Background Subtracted Method Based ViBe
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    ViBe背景减去算法基于RGB色彩空间对像素进行处理,在光照突然改变的情况下,会造成大面积的背景误判为运动前景;同时会将场景中的运动背景大量的误检为前景. 针对上述问题,本文提出一种结合(r,g,I)标准色彩空间的改进算法. 实验结果表明,改进算法在光照突然变化时对前景的提取具有更好的鲁棒性,同时对于场景中运动的背景像素点,取得了更好的检测效果.

    Abstract:

    ViBe background subtracted algorithm deals with pixels based on RGB color space. So when the light suddenly changed, a large of background area will be misclassified as moving foreground. In addition, ViBe algorithm considered a lot of the moving background pixels to be foreground in the scene. To solve these problem, this paper proposed algorithm which combined with (r,g,I) normalized color space. The experimental results show that the improved algorithm can reaches the more robust extraction for foreground at the abrupt changes of light. At the same time, the improved algorithm has a better effect on detecting the moving background pixels in the scene.

    参考文献
    1 Barnich O, Van Droogenbroeck M. ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans. on Image Processing, 2011, 20(6): 1709-1724
    2 Van Droogenbroeck M, Paquot O. Background subtraction: experiments and improvements for ViBe. IEEE CVPR Workshop on Change Detection. 2012. 32-37.
    3 Brutzer S, Höferlin B, Heidemann G. Evaluation of background subtraction techniques for video surveillance. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). 2011. 1937-1944.
    4 樊晓亮,杨晋吉.基于帧间差分的背景提取与更新算法.计算机工程,2011,37(22).
    5 Wang H, Suter D. A consensus-based method for tracking: Modelling background scenario and foreground appearance. 2007. 1091-1105.
    6 Elgammal A, Harwood D, Davis LS. Non-parametric model for background subtraction. Sixth European Conference on Computer Vision. 2000. 751-767.
    7 McKenna SJ, et al. Tracking groups of people. Computer Vision Image Understanding, 2000, (80): 42-56.
    8 叶青,贺助理,湛强,雷辉.基于差分图像分块的视频背景提取算法.计算机工程和应用,2012,48(30).
    9 Hofmann M, Tiefenbacher P, Rigoll G. Background segmentation with feedback: The pixel-based adaptive segmenter. Proc IEEE CVPR Workshop on Change Detection. 2012. 38-43.
    10 邱祯艳,王修晖.一种结合Grabcut的Vibe目标检测算法.中国计量学院学报,2012,23(3).
    11 Kim K, Chalidabhongse T, Harwood D, Davis L. Real-time foreground-background segmentation using codebook model. Real-Time Imaging, June 2005, 11(3): 172-185.
    12 Manzanera A, Richefeu J. A new motion detection algorithm based on background estimation. Pattern Recognition Letters, February 2007, 28(3): 320-328.
    13 蒋建国,王涛,齐美彬,安红新.基于ViBe的车流量统计算法.电子测量与仪器学报,2012,26(6).
    14 Stauffer C, Grimson E. Adaptive background mixture models for real-time tracking. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Ft. Collins, CO. Jun. 1999, 2: 246-252.
    15 Stauffer C, Grimson E. Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell., Aug. 2000, 22(8): 747-757.
    16 高山,毕笃彦,魏娜.基于SACON背景模型的人体检测和跟踪.计算机应用,2009, 29(6).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

严红亮,王福龙,刘志煌,沈士忠.基于ViBe算法的改进背景减去法.计算机系统应用,2014,23(6):130-134

复制
分享
文章指标
  • 点击次数:1404
  • 下载次数: 3605
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-11-01
  • 最后修改日期:2013-12-13
  • 在线发布日期: 2014-06-20
文章二维码
您是第11229693位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号