基于Aproiri算法的频繁项集挖掘优化方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(71171062);教育部人文社科青年基金(13YJCZH200);广东工业大学高教研究基金(2012ZY26)


Frequent Itemsets Mining Optimization Methods Based on Aproiri Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了进一步降低扫描数据库的次数和减轻内存负担,从而更好地提高挖掘频繁项集的效率,一种基于Apriori的优化算法(M-Apriori)被提出. 该方法通过构建频繁状态矩阵来存放项集的频繁状态,构建事务布尔矩阵来存放事务与项集的关系,此算法只需在初始化阶段扫描一次数据库产生初始的频繁状态矩阵和事务布尔矩阵,并在此基础上直接递推产生所有的频繁项集. 实验证明,与Apriori算法相比,M-Apriori算法具有更好的性能与效率.

    Abstract:

    To reduce the number of database scanning and reduce the burden of memory further, also to improve the efficiency of mining frequent itemsets better, an Apriori-based optimization algorithm (M-Apriori) is proposed. The method stores frequent itemsets state by constructing the frequent state matrix and store the relationship between the transaction and itemsets by constructing the Boolean matrix. The algorithm scans the database only once and generates the initial frequent state matrix and the Boolean matrix during the initialization phase. On this basis, all frequent itemsets can be found directly without scanning the database repeatedly. Experiments show that M-Apriori algorithm has better performance and efficiency compared with the Apriori algorithm.

    参考文献
    相似文献
    引证文献
引用本文

吴学雁,莫赞.基于Aproiri算法的频繁项集挖掘优化方法.计算机系统应用,2014,23(6):124-129

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-11-05
  • 最后修改日期:2013-12-13
  • 录用日期:
  • 在线发布日期: 2014-06-20
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号