一种KAZE算法在人脸图像匹配中的应用
作者:

Application of KAZE Algorithm in Human Face Image Matching
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于KAZE人脸图像匹配算法是通过加性算子分裂算法来进行非线性扩散滤波,从而解决高斯分解带来的边界模糊和细节丢失问题. 利用任意步长构造稳定的非线性尺度空间,寻找不同尺度归一化后的Hessian局部极大值点来实现特征点的检测,采用M-SURF来描述特征点,从而构造特征描述向量. 在VS2010和Opencv环境下分别对KAZE特征和SIFT特征实现人脸图像的匹配. 通过改变输入人脸图像的模糊度,旋转角度,尺度大小,亮度变化结合Matlab对KAZE,SIFT,SURF进行进一步的性能仿真实验. 实验结果表明,即使在高斯模糊,角度旋转,尺度变换和亮度变化等情况下依然保持良好的性能.

    Abstract:

    The face images matching algorithm based on KAZE is to do nonlinear diffusion filtering by the additive operator splitting algorithm. In this way, the problem of blurred boundaries and detail missing can be solved. A stable nonlinear scale space is constructed by using arbitrary step to search the Hessian local maximum value point after different scales normalizing to detect feature points. By using M-SURE to describe the feature points, the feature vectors are constructed. The KAZE and SIFT feature are used to do face images matching under VS2010 and Opencv. By changing the blur level, angle of rotation, scale, change of brightness, a further simulation experiment can be conducted aiming at KAZE, SIFT, SURF in Matlab. The research result proves that the KAZE has better performance even if under the condition of Gaussian Blur, angle rotating, scale transformation and intensity roughness.

    参考文献
    1 Alcantarillay PF, Bartoliy A, et al. KAZE features.Computer Vision - ECCV 2012. 2012.
    2 Weickert J, Ishikawa S, Imiya A. Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision,1999,10 (3): 237-252.
    3 黄超,齐英剑.SIFT算法研究与应用.中国传媒大学学报自然科学版,2012(1):68-72.
    4 Weickert J, Romeny BMTH, Viergever MA. Efficient and reliable schemes for non-linear diffusion filtering. IEEE Trans. on Image Processing, 1998, 7 (3): 398-410.
    5 Perona P, Malik J. Scale-space and detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 1990, 12: 1651-1686.
    6 Weickert J. Efficient image segmentation using partial differential equations and morphology. Pattern Recognition, 2001, 34 (9) :1813-1824.
    7 阮宗才,许冠明.基于AOS的线性种子扩散图像分割方法研究.微电子学与计算机,2006, 23(12).
    8 Lindeberg T. Feature detection with automatic scale selection. International Journal of Computer Vision, 1998, 30(2): 77-116.
    9 Brown M, Lowe D. Invariant features from interest point groups. British Machine Vision Conf. Cardiff, UK. 2002.
    10 Bay H, Ess A, Tuytelaars T, Gool LV. SURF: Speeded up robust features. Computer Vision and Image Understanding, 2008, 110: 346-359.
    11 Alcantarilla PF, Bergasa LM, Davison AJ. Gauge-SURF Descriptors. Image and Vision Computing, 2013, 31(1): 103-116.
    12 Agrawal M, Konolige K, Blas MR. Censure: Center surround extremas for realtime feature detection and matching. Computer Vision-ECCV 2008. 2008, 5305: 102-115.
    13 马莉.MATALB语言实用教程.北京:清华大学出版社, 2010:141-176.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

衷伟岚,周力,袁臻.一种KAZE算法在人脸图像匹配中的应用.计算机系统应用,2014,23(4):144-148

复制
分享
文章指标
  • 点击次数:1636
  • 下载次数: 4340
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-08-31
  • 最后修改日期:2013-10-04
  • 在线发布日期: 2014-04-25
文章二维码
您是第11432179位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号