基于蜂群算法的网络入侵检测模型优化
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(60443004)


Optimization of Network Intrusion Detection Model based on Artificial Bee Colony Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于网络入侵检测的蜂群算法优化模式是一个用于网络入侵检测开发的专用编程接口。基于该编程接口,在Linux平台上设计和实现了一个复杂的入侵检测系统。基于网络入侵检测的蜂群算法与差分进化算法(DE)混合,采取数据信息处理模式,可以按照双群结构的要求,进行数据信息独立分析,从而能够产生数据信息交换功能。通过分布式技术对蜂群进行空间分析,通过空间信息搜索工具,保证学习策略功能能够完成。从仿真实验看提高种群解的质量。设计了一种简单入侵检测模式的描述语言,对入侵检测的特征数据库进行优化,对网络异常行为进行入侵检测。

    Abstract:

    The Artificial Bee Colony Algorithm based on network intrusion detection is a set of application programming interface, based on which a sophisticated intrusion detection system is designed and developed on Linux platform, and based on such an algorithm combined with Differential Evolution (DE), data information exchange is thereby realized, with data processing model adopted and analysed independently under the bi-group structure rules. By analyzing bee colony with distributed technology and with the space information search tool, the study strategy function is thereby assured. The quality of population improvement can be proved through emulation experiments. A script of description language for a simple intrusion detection model is designed, with a view to optimize the detection sample database and perform the detection for network anomalous behaviors.

    参考文献
    相似文献
    引证文献
引用本文

吴建龙.基于蜂群算法的网络入侵检测模型优化.计算机系统应用,2014,23(2):223-226,222

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-07-13
  • 最后修改日期:2013-08-26
  • 录用日期:
  • 在线发布日期: 2014-01-27
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号