基于自适应图的半监督学习方法
作者:

Adaptive Graph-Based Semi-Supervised Learning Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于图的半监督学习方法中,图结构经常要预先设定,这就导致了在标签传递过程中,算法不能自适应地学习一个最优的图。为此,提出了一种基于自适应图的半监督学习方法。该方法通过迭代的优化方法同时学习到最优的图和标签。而且,在少量标记样本的情况下该方法也可以得到较高的分类准确率,并通过实验证明了该方法的有效性。

    Abstract:

    In most graph-based semi-supervised methods, graph structure is often set in advance, which leads to the fact that the algorithm can’t learn an optimal graph in the process of label propagation. Therefore, this paper proposes a method called Adaptive Graph-based Semi-supervised Learning Method (AGSSLM). This method can learn the optimal graph and label simultaneously by using the iterative optimization method. Moreover, this method can also obtain higher classification accuracy with fewer labeled samples. The experimental results validate the effectiveness of this method.

    参考文献
    1 Wei J, Pang H. Local and global preserving based semi-supervised dimensionality reduction method. Journal of Software, 2008, 19(11): 2833-2842.
    2 肖宇,于剑.基于近邻传播算法的半监督聚类.软件学报, 2008,19(11):2803-2813.
    3 尹学松,胡恩良,陈松灿.基于成对约束的判别型半监督聚类分析.软件学报,2008,19(11):2791-2802.
    4 高滢,刘大有,齐红,刘赫.一种半监督K均值多关系数据聚类算法.软件学报,2008,19(11):2814-2821.
    5 陈锦秀,姬东鸿.基于图的半监督关系抽取.软件学报, 2008,19(11):2843-2852.
    6 Yang SH, Zha HY, Zhou SK, Hu BG. Variational graph embedding for globally and locally consistent feature extraction. In: Buntine W, ed. Proc. of the European Cone on Machine Learning and Knowledge Discovery in Databases: Part II(ECML PKDD 2009). Berlin, Springer-Verlag. 2009. 538-553.
    7 Zhao Z, Liu H. Spectral feature selection for supervised and unsupervised learning. In: Ghahramani Z, ed. Proc. of the 24th Int’1 Conf. on Machine Learning(ICML 2007). New York, ACM. 2007. 1151-1157.
    8 Wang F, Zhang CS. Robust self-tuning semi-supervised learning. Neuro Computing, 2007, 70(16-18): 2931-2939.
    9 Yan SC, Wang H. Semi-supervised learning by sparse representation. Proc. of SDM. 2009. 792-801.
    10 Belkin M, Matveeva L, Niyogi P. Regularization and semi-supervised learning on large graphs. Lecture Notes in Computer Science, 2004, 3120: 624-638.
    11 Wang F, Zhang CS. Label propagation through linear neighborhoods. IEEE Trans. on Knowledge and Data Engineering, 2008, 20(1): 55-67.
    12 Zhu X, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions. Proc. of the International Conference on Machine Learning. 2003.
    13 Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research 7, 2006: 2399-2434.
    14 Zhou D, Bousquet O, Lal T, Weston J, Scholkopf B. Learning with local and global consistency. Advances in Neural Information Processing Systems 16, 2004: 321-328.
    15 Asuncion A, Newman D. UCI Machine Learning Repository. 2007. http://ergodicity.net/tag/machine-learning/.
    16 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
    17 Chapelle O, Scholkopf B, Zien A. Semi-supervised Learning. MIT Press. 2006.
    相似文献
    引证文献
引用本文

梅松青.基于自适应图的半监督学习方法.计算机系统应用,2014,23(2):173-177

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-07-18
  • 最后修改日期:2013-09-09
  • 在线发布日期: 2014-01-27
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号