基于RSKNN分类改进算法
作者:
基金项目:

国家自然科学基金(61070062,61175123);福建高校产学合作科技重大项目(2010H6007)


Improved RSKNN Algorithm for Classification
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    RSKNN算法是K近邻算法的一种改进算法,该算法基于变精度粗糙集理论,能在保证一定分类精度的前提下,有效地降低分类样本的计算量,并且提高计算效率和分类精度. 由于RSKNN算法对属性的依赖度较高,在分类时容易受到伪近邻的影响,导致RSKNN算法的分类精度受到一定程度的影响. 针对存在问题,本文提出一种新颖的基于RSKNN算法的改进算法SMwRSKNN,该算法在RSKNN算法的基础上引入类别子空间的思想,以降低冗余属性和伪近邻对分类的影响. 在UCI公共数据集上的实验结果表明,SMwRSKNN算法比RSKNN算法具有更高的分类精度.

    Abstract:

    RSKNN is an improved algorithm of KNN with better classification performance. The RSKNN algorithm is based on the theory of the variable precision rough set. The algorithm guarantees under the premise of a certain classification accuracy, effectively reduces the computation burden of the classified samples, and improves the computation efficiency and precision of classification. But the degree of dependence on attributes is very high, which can make RSKNN algorithm affected by a certain degree of precision in classification. So the use of the class subspace classification method into RSKNN algorithm can improve the classification accuracy of RSKNN. The experimental results carried out on some UCI public datasets verify the effectiveness of the proposed algorithm.

    参考文献
    1 Guo GD, Wang H, Bell D. KNN model-based approach in classification. Proc. of the OTM Confederated International Conference on CoopIS, DOA, and OD BASE. Catania, Italy. 2003. 986-996.
    2 Liu HW, Zhang SC. Noisy data elimination using mutual k-nearest neighbor for classification mining. The Journal of Systems and Software, 2012, (85): 1067-1074.
    3 张著英,黄玉龙,王翰虎.一个高效的 KNN分类算法.计算机科学,2008,35(3):170-172.
    4 余鹰,苗夺谦,刘财辉,王磊.基于变精度粗糙集的KNN分类改进算法.模式识别与人工智能,2012,25(4):618-623.
    5 Dudani SA. The distance-weighted kNearest neighbor rule. IEEE Trans. on System, Man and Cybernetics, 1976, SMC-6(4): 325-327.
    6 Huang JZ, Ng MK, Rong H. Automated variable weighting in k-means type clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(5): 657- 668.
    7 Guo GD, Neagu D. Fuzzy kNNModel applied to predictive toxicology data mining. International Journal of Computational Intelligence and Applications, 2005, 5(3): 321-333.
    8 李荣陆,胡运发.基于密度的KNN文本分类器训练样本裁剪方法.计算机研究与发展,2004,41(4):539-545.
    9 张健飞,陈黎飞,郭躬德,李南.多代表点子空间分类算法.计算机科学与探索,2011,(11):1037-1048.
    10 李南,郭躬德.基于子空间集成的概念漂移数据流分类算法.计算机系统应用,2011,20(12):241-248.
    11 Huang XM, Guo GD, Neagu D. Weighted kNN model- based data reduction and classification. Fuzzy Systems and Knowledge Discovery, 2007.
    12 卢伟胜,郭躬德,严宣辉,陈黎飞.SMwKNN:基于类别子空间距离加权的互K近邻算法.计算机科学,2013.
    13 UCI Repository of Machine Learning Databases http:// archive.ics.uci.edu/ml/.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

兰天,郭躬德.基于RSKNN分类改进算法.计算机系统应用,2013,22(12):85-92

复制
分享
文章指标
  • 点击次数:1632
  • 下载次数: 3101
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-05-04
  • 最后修改日期:2013-06-18
  • 在线发布日期: 2013-12-12
文章二维码
您是第11225739位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号