网络环境下智能监控综述
作者:
基金项目:

国家自然科学基金(60875050,61272364);国家高技术研究发展计划((2006AA04Z247);广东省自然科学基金(9151806001000025);深圳市科技计划及基础研究计划(JC201005270275A);深圳市战略性新兴产业发展专项资金(JCYJ20120614144655154);北京师范大学珠海分校科研创新团队(多媒体传输与计算机视觉研究团队,201251006);北京师范大学珠海分校教改项目(201329).


Intelligent Monitoring under Network Environment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    网络环境下的智能监控在各类技术背景的支持下迅速发展了起来,广泛应用于生产制造、智能安检、图像检索、医疗影像分析等领域. 与此同时,对其核心计算机视觉的研究更是处在高新技术研究领域的前沿. 现今计算机视觉技术面临着语义信息描述模糊、效率低下等诸多问题. 本文旨在研究网络环境下的智能监控技术的基础上,回顾并分析其发展轨迹,梳理各核心技术的内在联系并加以归纳总结,展望其发展趋势,并针对其热点研究之—视觉跟踪,特别是多摄像头协同工作的情况,进行了较为详细的介绍.

    Abstract:

    For the support of a variety of technologies, the intelligent monitoring under the network environment develops rapidly. It is widely used in manufacturing, smart security, image retrieval, medical image analysis and other fields. Meanwhile, the study of its key technology, computer vision is at the leading edge of the field of high-tech research. Currently, the computer vision technology faces many problems such as vague description of semantic information and inefficient. Based on the study of current technology of intelligent monitoring under the network environment, this article aims to review and analyze the pathway of its development, then discover and summarize the internal relations among the core technologies and try to predict the development trends of the intelligent monitoring under the network environment. Additionally, the detailed description of visual tracking, one of the hotspot studies especially the condition of multi-camera collaborative work is presenting in the article.

    参考文献
    1 林海平.智能监控开启新时代.大科技.2013,2:301-302.
    2 Marr D. Vision - A Computational Investigation into the Human Representation and Processing of Visual Information. New York. WH Freeman.
    3 项海兵.计算机视觉发展中存在的问题.新浪潮,1996,(4): 29-30.
    4 许志杰,王晶,刘颖,范九伦.计算机视觉核心技术现状与展望.西安邮电学院学报,2012,17(6):1-8.
    5 陈丹.计算机视觉技术的发展及应用.Computer Knowledge and Technology,2008,12(4):2449-2450.
    6 侯志强,韩崇昭.视觉跟踪技术综述.自动化学报,2006,(4): 603-617.
    7 张进.视觉跟踪技术发展和难点问题的分析.信息技术与信息化,2008,(6):63-64.
    8 杨戈,刘宏.视觉跟踪算法综述.智能系统学报.2010,5(2): 95-105.
    9 VisualTrackingReview. http://www.cnblogs.com/CVArt/archive /2011/07/03/ 2096683. html. 2011-7-3.
    10 王法胜,郭权.视觉跟踪中的粒子滤波算法研究进展.山西大学学报(自然科学版),2011,34(4):528-533.
    11 Itra PM, Murthy C, Pal S. Unsupervised feature selection using feature similarity. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(3): 301-312.
    12 Kaneko T, Hori O. Feature selection for reliable tracking using template matching. Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR03. Madison, Wisconsin, USA. IEEE Press. 2003.1. 796-802.
    13 岑峰,戚飞虎,曾文珺.基于边缘吸引力场正则化的短程线主动轮廓模型.电子学报,2003,31(1):82-84.
    14 戴维.A.福赛斯,简.泊斯.计算机视觉—一种现代方法.电子工业出版社.2004.
    15 刘露.人脸识别技术新发展.百科知识,2013,(2):22.
    16 刘鑫,许华荣,胡占义.基于GPU和Kinect的快速物体重建.自动化学报,2012,38(8):1288-1297.
    17 谢鹏程.基于单摄像头的运动目标跟踪定位技术研究.计算机光盘软件与应用,2012,18:82-84.
    18 陈伟宏,肖卫初.监控系统中的多摄像头协同算法.重庆工学院学报,2008,22(4):117-123.
    19 Comanniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
    20 Hager G, Belhumeur P. Eficient region tracking with parametric models of geometry and illumination. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(10): 1025-1039.
    21 Jurie F. Tracking objects with a recognition algorithm. Pattern Recognition Letters, 1998, 19(3-4): 331-340.
    22 Drummond T. Cipolla R. Real-time visual tracking of complex structures. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(7): 932-946.
    23 Tissainayagam P, Suter D. Object tracking in image sequence using point feature. Pattem Recognition, 2005, 38(1): 105-113.
    24 Nickels K, Hutchinson S. Estimating uncertainty in SSD-based feature tracking. Image and Vision Computing, 2002, 20(1): 47-58
    25 Dgoldenberg R, Kimmel R, Rivlin E, Rudzsky M. Fast geodesic active contours. IEEE Trans. on Image Processing, 2001, 10(10): 1467-1475.
    26 Mansouri A. Region tracking via level set PDEs without motion computation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(7): 947-961.
    27 Stenger B, Woodley T, Cipolla R. A vision-based remote control. Studies in Computational Intelligence, 2010, 285: 233-262.
    28 Lim J, Ross D, Lin RS, Yang MH. Incremental learning for visual tracking. Advances in neural information processing systems, 2004, 17: 793-800.
    29 Kulaczewski MB, Siegel HJ. SIMD and mixed-mode implementations of a visualtracking algorithm. Parallel. Processing Symposium, 1998. IPPS/SPDP 1998.
    30 章建祥.多摄像头协同跟踪系统关键技术研究[硕士学位论文].杭州:浙江工商大学.2011.
    31 Intille S, Davis J, Bobick A. Real-time closed-world tracking. IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico.1997. 697-703.
    32 陈伟宏.基于多摄像头的目标跟踪算法研究[硕士学位论文].长沙:湖南大学.2005.
    33 Snidaro L, Niu R, Varshney PK. Automatic camera selection and fusion for outdoor surveillance under changing weather conditions. IEEE Conference on Advanced Video and Signal Based Surveillance. Miami Beach, Florida, USA. 2003.364-369.
    34 Nummiaro K, Koller-Meier E, Svoboda T. Color-based object tracking in multi-camera environments. 25th Pattern Recognition Symposium. Magdeburg. 2003. 591-599.
    35 Lim SN, Davis LS, Elgammal A. A scalable image-based multi-camera visual surveillance system. IEEE Conference on Advanced Video and Signal Based Surveillance. Miami, Florida, USA. 2003. 205-212.
    36 Henriksson D, Olsson T. Maximizing the use of computer resources in multi-camera feedback control. Proc. of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium(RTAS). Toronto. 2004.360-367.
    37 Nguyen NT, Venkatsh S, West G. Multiple camera coordination in a surveillance system. Acta Automatica Sinica, 2003, 29(3): 408-422.
    38 Boyd JE, Meloche J, Vardi Y. Statistical tracking in video traffic-surveillance. Proc. ICCV99. Corfu, Greece. 1999. 163-168.
    39 Ellis T. Multi-camera video surveillance. Proc. of 36th Annual 2002 International Carnahan Conference. 2002. 228-233.
    40 Makris D, Ellis TJ. Path detection in video surveillance. Image and Vision Computing, 2002, 20(12): 895-903.
    41 Makris D, Ellis T. Automatic learning of an activity- based semantic scene model. IEEE International Conference on Advanced Video and Signal Based Surveillance. Miami, FL, USA. 2003. 183-188.
    42 Makris D, Ellis T, Black J. Bridging the gaps between cameras. Proc. the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington. 2004, 2. 205-210.
    43 Junejo I, Javed O, Shah M. Multi feature path modeling for video surveillance. 17th conference of the International Conference on Pattern Recognition (ICPR). Cambridge. 2004. 716-719.
    44 Jain R, Wakimoto K. Multiple perspective interactive video. Proc. of IEEE International Conference on Multimedia Computing and Systems. 1995. 202-211.
    45 Javed O, Rasheed Z, Alata O. KnightM: A real time surveillance system for multiple overlapping and non- overlapping ccameras. Invited paper in IEEE conference on Multimedia and Expo, Special Session on Multi-Camera Surveillance Systems. Baltimore. 2003.
    46 Lim SN, Davis LS, Elgammal A. A scalable image-based multi-camera visual surveillance system. IEEE Conference on Advanced Video and Signal Based Surveillance. Miami, Florida, US. 2003. 205-212.
    47 Huang T, Russell S. Object identification in a bayesian context. Proc. of IJCAI. Nagoya, Japan. 1997. 1276-1283.
    48 Orwell J, Remagnino P, Jones GA. Multi-camera colour tracking. IEEE International Workshop on Visual Surveillance. Fort Collins, Colorado. 1999. 14-21.
    49 Javed O, Shafique K, Shah M. Appearance modeling for tracking in multiple non-overlapping cameras. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). San Diego. 2005, II. 26-33.
    50 Mittal A, Davis L. Unified multi-camera detection and tracking using region-matching. IEEE Workshop on Multi-Object Tracking. Vancouver, Canada. 2001. 3-10.
    51 Snidaro L, Niu R, Varshney PK. Automatic camera selection and fusion for outdoor surveillance under changing weather conditions. IEEE Conference on Advanced Video and Signal Based Surveillance. Miami Beach, Florida. 2003. 364-369.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨戈,尤晓旭.网络环境下智能监控综述.计算机系统应用,2013,22(12):1-12

复制
分享
文章指标
  • 点击次数:2939
  • 下载次数: 6901
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2013-04-24
  • 最后修改日期:2013-07-01
  • 在线发布日期: 2013-12-12
文章二维码
您是第11508284位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号