基于Isomap降维的噪声处理算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Noise Processing Algorithm Based on Isomap Reducing Dimensionality
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于非线性降维方法对高维数据中存在的噪声比较敏感, 导致最终的分类效果比较差. 为了弥补其不足, 在首先使用极大似然估计方法估测出样本数据本征维度的前提下, 提出一种结合等距特征映射与主成分分析的方法. 一方面能够使原始数据保持其在高维空间的几何结构, 另一方面可以消除噪声对降维结果的影响, 最终使得低维数据尽可能的保持原始样本数据集的内在特征. 通过实验论证表明, 该组合方法的效果比单独直接使用等距特征映射和主成分分析算法的效果都要好.

    Abstract:

    Nonlinear dimensionality reduction method is more sensitive to the noise in the high-dimensional data, resulting in relatively poor final results of classification. In order to make up for its shortcomings, this paper proposes a method in the premise of using the maximum likelihood estimation method to estimate the intrinsic dimension of the sample data, which combines the isomapetric mapping with the principal component analysis. On the one hand, the method enables the original data to maintain its geometry in the high dimensional space, on the other hand, the method can eliminate the influence of noise on the dimensionality reduction results, eventually making the low-dimensional data as much as possible to maintain inherent characteristics of the original sample data sets. Experimental demonstrations show that the results of combination method is better than separate isometric mapping and separate principal component analysis.

    参考文献
    相似文献
    引证文献
引用本文

屈治礼.基于Isomap降维的噪声处理算法.计算机系统应用,2013,22(11):110-114,94

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-04-12
  • 最后修改日期:2013-05-20
  • 录用日期:
  • 在线发布日期: 2013-11-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号