Fermi架构下超声成像组织运动可视化并行算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Parallel Processing Algorithm of Tissue Motion Visualization for Ultrasound Imaging on Fermi
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在临床超声实时成像系统中组织运动情况是医生想要获取的重要诊断信息, 例如心脏运动. 基于线积分卷积的二维矢量场可视化技术可以同时展现运动矢量场的强度和方向. 但这一算法在处理时涉及大量的复杂计算, 尤其是流线追踪处理部分, 使其成为临床实时成像系统中的一大性能提升瓶颈. 为此研究并提出了一种基于新兴的高性能并行计算平台Fermi架构GPU(graphics processing unit图形处理单元)的并行运动可视化算法. 数据测试结果显示, 与基于CPU的实现相比, 采用Fermi架构的GPU处理不仅可以得到一致的运动可视化和信息分析效果, 而且可以取得较大的加速效果. 对于260×260的图像数据在使用线积分卷积滤波器长度为7的情况下, 速度提高了大约237倍.

    Abstract:

    On the clinical ultrasound real-time imaging system, tissue motion will be the important diagnostic information for doctors, such as cardiac motion analysis. In this paper, one motion visualization method based on line integral convolution (LIC) is studied. This method could show the vector field information about both direction and intensity. However because of the massive computation involved in this filter technique, especially in streamline tracking, it has been the bottleneck for the clinical real-time imaging system. In this paper, a new parallel algorithm of motion visualization based on Fermi GPU (graphics processing unit) is presented. Test results not only show the output of graphics processing unit (GPU) is definitely the same as the one of CPU, but also demonstrate the obvious speedup using GPU, that is, it can be 237 times faster than the CPU implementation with the long LIC filter (L=7) for the image size (260×260).

    参考文献
    相似文献
    引证文献
引用本文

何兴无. Fermi架构下超声成像组织运动可视化并行算法.计算机系统应用,2013,22(4):147-152

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-09-27
  • 最后修改日期:2012-12-08
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号