基于集成学习理论的文本情感分类
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(71101042);高等学校博士学科点专项科研基金(20110111120014);中国博士后科学基金(2011M501041);合肥工业大学博士学位专项资助基金(2010HGBZ0607)


Text Sentiment Classification Based on Ensemble Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着Web2.0的迅速发展,越来越多的用户乐于在互联网上分享自己的观点或体验。这类评论信息迅速膨胀,仅靠人工的方法难以应对网上海量信息的收集和处理,因此基于计算机的文本情感分类技术应运而生,并且研究的重点之一就是提高分类的精度。由于集成学习理论是提高分类精度的一种有效途径,并且已在许多领域显示出其优于单个分类器的良好性能,为此,提出基于集成学习理论的文本情感分类方法。实验结果显示三种常用的集成学习方法Bagging、Boosting和Random Subspace对基础分类器的分类精度都有提高,并且在不同

    Abstract:

    With the development of Web 2.0, more and more users are happy to share their opinions and experiences on the internet. Subsequently, it is increasingly difficult for people to collect and process the huge information from the network. Therefore, text sentiment classification based on the computer is proposed to tackle this problem. And one of the most important research directions is to enhance the classification accuracy for text sentiment classification. In addition, ensemble learning is an effective approach to enhance the classification accuracy and has shown better performance than base classifiers in many fields. Based on these considerations, text sentiment classification based on ensemble learning is proposed to enhance the performance of classifiers. Experimental results reveal that three ensemble methods, i.e., Bagging, Boosting and Random Subspace, enhance the classification accuracy of different base classifiers. Compared with Bagging and Boosting, Random Subspace gets more significant improvement of the classification accuracy. All these results demonstrate the effectiveness and feasibility of application of ensemble learning in text sentiment classification.

    参考文献
    相似文献
    引证文献
引用本文

方丁,王刚.基于集成学习理论的文本情感分类.计算机系统应用,2012,21(7):177-181,248

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-11-08
  • 最后修改日期:2011-12-19
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号