利用遗传算法改进SOM网络初始权值的乐器分类
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61075008)


Using Genetic Algorithms to Improve the Initial Weights of SOM Network in the Musical Instrument Classification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对SOM网络在分类中由于其初始权值的随机性而导致的训练次数过多且易陷入局部最小的问题,提出了利用遗传算法改进网络初始权值的乐器分类。仿真实验提取10种乐器的12阶MFCC系数,之后使用遗传算法计算出每种乐器各阶系数的适应度值,并以此作为网络的初始权值,之后使用已赋初值的SOM网络分类。仿真实验结果表明:利用遗传算法改进SOM网络初始权值的乐器分类方法的分类正确率最高可达到83.51%。

    Abstract:

    For the problem of excessive training and easy to fall into local minimum in SOM network in the classification caused by the randomness of its initial weight, using genetic algorithm to improve network initial weights in instrument classification is proposed. Simulation experiments extract 12-order MFCC coefficients of 10 different kinds of musical instruments. Then use the genetic algorithm to calculate the fitness value of each order in each instrument, and use the fitness value as the network initial weights. Simulation results show that: the way of using genetic algorithms to improve the initial weights of SOM network in the musical instrument classification is effective and the classification accuracy can reach 83.51%.

    参考文献
    相似文献
    引证文献
引用本文

杨松,于凤芹.利用遗传算法改进SOM网络初始权值的乐器分类.计算机系统应用,2012,21(4):238-240

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-07-24
  • 最后修改日期:2011-09-07
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号