油管输送式射孔排炮优化问题的改进蚁群算法
作者:
基金项目:

黑龙江省自然科学基金(F2007-11)


Improved Ant Colony Algorithm for Cannon Arrangement for Tubing Conveyed Perforation Problem
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [8]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为解决油管输送式射孔排炮问题中射孔枪总长最短的优化需求,建立了优化问题的数学模型,将问题的搜索空间抽象为图来表示,将蚁群算法应用于该问题的求解。算法局部搜索采用贪婪的策略,以及伪随机比例的状态转移规则,为避免算法早熟收敛,对信息素增量的计算公式进行了改进。实验结果与回溯法对比表明,蚁群算法解决此问题更有效。

    Abstract:

    To solve the optimization requirement of shorting total joint length among perforators in cannon arrangement for tubing conveyed perforation problem, the mathematical model of optimization problem was build, search space was abstract to graphic explanation, then ant colony algorithm was applied to this problem. In this paper, greedy algorithm was applied in local searching, the pseudo-random proportional rule was adopted, computational formula of Pheromones Increment was improved. The results show that the solution which ant colony algorithm produces is better than the one which backtracking algorithm produce.

    参考文献
    1 万仁溥.现代完井工程.第3 版.北京:石油工业出版社,2008.
    2 陈汶滨,张述,刘小玲.基于回溯法油管传输射孔排炮算法研 究.西南石油大学学报,2010,32(3):176-179.
    3 Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies. Proc. of the First European Conference on Artificial Life. Paris, France, 1991.
    4 倪庆剑,邢汉承,张志政,王蓁蓁.蚁群算法及其应用研究进 展.计算机应用与软件,2008,25(8):12-16.
    5 Stützle T, Dorigo M. ACO Algorithms for the Traveling Salesman Problem. Evolutionary Algorithms in Engineering and Computer Science. Chichester, UK: Wiley, 1999. 163-183.
    6 Zwaans W, Marques C. Ant colony optimisation for Job shop scheduling. Proc. of Workshop on Genetic Algorithms and Artificial Life.1999.
    7 Maniezzo V, Carbonaro A. An ANTS heuristic for the frequency assignment problem. Future Generation Computer Systems, 2000,16:927-935.
    8 段海滨.蚁群算法原理及其应用.北京:科学出版社, 2005:116.
    引证文献
引用本文

吴雅娟,周红,李博.油管输送式射孔排炮优化问题的改进蚁群算法.计算机系统应用,2012,21(3):224-227

复制
分享
文章指标
  • 点击次数:1885
  • 下载次数: 3272
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2011-07-07
  • 最后修改日期:2011-07-29
文章二维码
您是第12472747位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号