基于时空相关性的数字电影放映场次预测
作者:

Digital Film Screening Forecast Based on Spatio-Temporal Correlation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [9]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为提高数字电影流动放映中各院线放映场次的预测精度,基于院线放映场次的时空相关性,提出一种最邻近法和时空序列相结合的预测方法:通过最邻近法选取与待预测院线放映最相关的院线作为预测辅助院线;通过构造神经网络的时空序列将这些相关院线放映场次的时、空特征结合起来,产生更精确的预测模型。实验对比分析了此方法与传统时间序列预测方法的预测结果,证明了该方法具有更高的预测精度。

    Abstract:

    In order to improve the forecast accuracy of film screenings in each cinema in the mobile digital film projection, this paper proposes a new method combining nearest neighbor method and spatio-temporal sequence together based on the spatio-temporal correlation of cinema screenings. Firstly nearest neighbor method was used to find cinemas which correlated the predicted cinema closely. Secondly, spatio-temporal sequences used for a neural network were constructed to combine the spatio-temporal characteristics together, getting more accurate forecast model. Experiments compared the forecast result of this method with the tradition one, demonstrating its higher accuracy.

    参考文献
    1 师瑞峰,周一民.基于数据挖掘的人口数据预测模型综述. 计算机工程与应用,2008,44(9):1-6.
    2 王婷婷,钱晓东.时间序列的非线性趋势预测及应用综述. 计算机工程与设计,2010,31(7):1545-1549.
    3 汪成亮,张硕果.通过确定邻近区域改进KNN 文本分类.计 算机系统应用,2009,18(11):56-58.
    4 Eamonn JK, Michael JP. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. Proc. of the 4th International Conference on Knowledge Discovery and Data,1998: 239-241.
    5 马骊溟,徐毅,李泽湘.基于动态网络划分的散乱点k 邻近快 速搜索算法.计算机工程,2008,34(8):10-11.
    6 Wang W, Li X, Wang C. River water level forecast based on spatio-temporal series model and RBF neural network. 2nd International Conference on Information Science and Engineering. 2010: 6891.
    7 王建军,徐宗本.多元多项式函数的三层前向神经网络逼近 方法.计算机学报,2009,32(12):2482-2488.
    8 Hornik K, Stinchcombe M, White H. Universal approximation using feedforward networks with non-sigmoid hidden layer activation functions. International Joint Conference on Neural Networks (IJCNN), 1989:613.
    9 刘卫宁,王鹏,孙棣华等.基于改进BP 神经网络的道路交通 事故预测.计算机系统应用,2010,19(10):177-181.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

付园,高强.基于时空相关性的数字电影放映场次预测.计算机系统应用,2012,21(3):154-159

复制
分享
文章指标
  • 点击次数:1634
  • 下载次数: 3296
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2011-07-07
  • 最后修改日期:2011-08-31
文章二维码
您是第11280520位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号