BP神经网络模型预测控制算法的仿真研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Simulation on Predictive Control Algorithm Based on BP Neural Network Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为克服被控对象参数变化导致控制精度降低的问题,研究了一种BP神经网络模型预测控制算法.借助最小二乘递推算法在线预测系统模型参数,利用BP神经网络在线预测PID参数以控制被控对象.该算法基于模型预测,首先在线性系统中验证其控制效果,然后将非线性问题作线性处理,采用BP神经网络模型预测PID控制器予以实现控制非线性系统.仿真曲线显示BP神经网络PID控制器用于线性系统可达到高精度控制要求;对于非线性系统有自适应及逼近任意函数的能力.仿真研究表明,该算法与传统BP神经网络PID控制器相比,其自适应能力更强,稳定

    Abstract:

    To overcome the problem of lower control precision caused by parameters varying of the controlled object, the paper proposed a sort of predictive control algorithm based on BP neural network model. In the paper, it applies the predictive parameter of PID controller based on BP neural network on line to control the controlled object, and the system model parameter was on line predicted by means of least recursive squares algorithm. The algorithm would be based on model prediction. It first validats its control effect in the linear system, and then the non-linear problem would be treated as the linearity. The non-linear system would be controlled by use of predictive control algorithm based on BP neural network model. The simulation curves showes that it could achieve high control precision in the linear system to PID controller of BP neural network, and own the ability of adaptation and approaching arbitrary function. The simulation researches show that it is stronger in adaptation, better in stability, and higher in control precision compared with the traditional BP neural network PID controller.

    参考文献
    相似文献
    引证文献
引用本文

程森林,师超超. BP神经网络模型预测控制算法的仿真研究.计算机系统应用,2011,20(8):100-103,180

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-12-08
  • 最后修改日期:2011-01-02
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号