基于改良蚁群算法的神经网络分类规则提取
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Rules Extraction from Artificial Neural Networks for Classification Based Improved Ant Colony Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在数据挖掘领域,分类获得了很大的关注度,其主要目的是预测数据对象的所属类别。分类方法可分为基于规则和不基于规则两大类,其中神经网络由于在预测、从经验中学习、从先前样本中泛化等方面的优秀表现,使其成为分类领域的一个重要的方法,并往往能够获得很高的分类准确性,然而其非常有限的解释能力成为了制约其应用的一大缺陷。提出了一种基于改良蚁群算法的神经网络分类规则提取方法,通过改良的蚁群算法来填补神经网络有限的解释能力,从数据中提取出分类规则。实验证明,该方法能够很好的辅助神经网络,从要分类的数据中获取规则。

    Abstract:

    Classification obtains great concern in the field of data mining. Its main purpose is to predict the classification of data objects. Classification can be divided into two major categories of rule-based and non-rule-based, however because of the excellent performance that artificial neural network(ANN) can obtain from prediction, studying from experience and generalizing from the previous samples, making it an important method of classification. Although ANNs can achieve high classification accuracy, their explanation capability is very limited, as to restrict its application. This paper presents an improved ant colony algorithm based on ANNs classification rule extraction method, an improved ant colony algorithm is to help solve the ANN’s limited explanation capability to extract rules from the data. Experiments show that this approach could coordinate neural network to obtain rules of classified data well.

    参考文献
    相似文献
    引证文献
引用本文

许海波,刘端阳,胡同森.基于改良蚁群算法的神经网络分类规则提取.计算机系统应用,2011,20(7):81-85

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-10-31
  • 最后修改日期:2010-12-12
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号