隐马尔可夫模型及其最新应用与发展①
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Hidden Markov Model and Its latest Application and Progress
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    隐马尔可夫模型是序列数据处理和统计学习的一种重要概率模型,已被成功应用于许多工程任务中。首先介绍了隐马尔可夫模型的基本原理,接着综述了其在人的行为分析、网络安全和信息抽取中的最新应用。最后对最近提出来的无限状态隐马尔可夫模型的原理及最新发展进行了总结。

    Abstract:

    Hidden Markov Model (HMM) is an important probabilistic model of sequential data processing and statistical study. It has already been successfully applied in many projects in practice. Firstly, this paper introduces the basic principles of the Hidden Markov Model, and then gives a review to its latest application in the human activity analysis, network security and information extraction. Finally it summarizes the theory and latest progress of the recently proposed infinite Hidden Markov Model (iHMM).

    参考文献
    相似文献
    引证文献
引用本文

朱明,郭春生.隐马尔可夫模型及其最新应用与发展①.计算机系统应用,2010,19(7):255-259

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-10-25
  • 最后修改日期:2009-12-06
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号