基于粗集神经网络的分类方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省教育厅科研项目(20070330);浙江海洋学院校级科研项目(21065005807)


Rough Set-Based Classification of Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数据挖掘是近年来发展快速的信息处理新技术,如何有效地从高维的、超大规模数据中提取隐藏的有用信息,是该领域的研究核心。针对海量数据的挖掘分类问题,将粗集和神经网络紧密结合建立一种新的高效数据挖掘模型,即利用粗糙集理论中的知识简化方法,去掉冗余的属性特征和样本,然后,利用性能优良的模糊kohonen 聚类神经网络进行聚类分析,最后形成分类规则。该模型充分融合了粗集强大的规则提取能力和神经网络优良的分类能力。实验证明模型具有很好的分类效率,且有较高的精确性。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

徐妙君.基于粗集神经网络的分类方法.计算机系统应用,2009,18(4):104-108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-10-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号