基于遗传-粒子群混合算法的测试用例生成研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省教育厅科研项目(20070744)


Test Case Generation Based on Genetic-Particle Swarm Optimization Hybrid Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统遗传算法(GA)容易产生早熟收敛和易陷入局部最优解的问题,提出了一种基于遗传-粒子群混合算法(GA-PSO)的软件测试用例自动生成算法。用混沌序列搜索产生初始种群,使所有测试用例在局部区域中再次寻找最优值,从而避免过早收敛,改进搜索最佳值的能力。仿真实验表明该混合算法具有更快的收敛速度,保持了种群的多样性,提高了全局搜索能力。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

李小青.基于遗传-粒子群混合算法的测试用例生成研究.计算机系统应用,2009,18(3):70-72

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-11-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号