基于描述特征改进的LVQ神经网络美元识别研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省自然科学基金项目(07JJ5077);国家自然科学基金资助项目(60503007)


Dollar Recognition Based on Expressive Features and Improved LVQ
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对货币识别中残币、旧币、假币识别的难度大和正确性不高等问题,提出了一种基于描述特征的改进LVQ的神经网络的美元识别算法。该算法首先使用基于描述特征的主成分分析技术(MEFFRA)提取美元的主要特征,然后使用MLVQ神经网络进行识别。不仅降低了货币特征提取时的复杂度,同时也克服了GLVQ和GLVQ-F算法的性能不稳定和对初值敏感性的理论缺陷,是一种更加优化的有师学习算法。试验结果表明,把该算法用于美元识别,有很好的效果。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

白明燕,贺建飚.基于描述特征改进的LVQ神经网络美元识别研究.计算机系统应用,2009,18(1):107-108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号