个性化推荐是电子商务系统中最重要的技术之一,随着用户数目和商品数目的日益增加,在整个商品空间上用户评分数据极端稀疏,传统的相似性度量方法存在各自的弊端,导致推荐系统的推荐质量急剧下降。针对传统相似性度量方法的不足,提出了一种新的基于模糊相似优先比的相似性度量方法,根据项目之间的相似性预测用户对未评分项目的评分,在此基础上,采用相似优先比计算目标用户的最近邻居。实验表明,该度量方式能够提高个性化推荐系统的推荐质量。
龚松杰.个性化推荐中一种新的相似性计算方法.计算机系统应用,2008,17(7):87-89
京公网安备 11040202500063号