MS-SwinCE: 融合多尺度Swin Transformer与对比特征增强的遥感图像变化检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


MS-SwinCE: Remote Sensing Image Change Detection Integrating Multi-scale Swin Transformer and Contrastive Feature Enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    遥感图像变化检测在城市扩张与灾害监测等领域中具有重要意义, 然而, 现有方法在特征提取能力、抗伪变化干扰以及多尺度融合方面仍存在不足之处. 本文提出一种融合多尺度Swin Transformer、对比特征增强模块(contrastive feature enhancement module, CFEM)与双向特征金字塔网络(bi-directional feature pyramid network, BiFPN)的变化检测模型MS-SwinCE. 该模型利用局部窗口和移位机制增强长程依赖建模能力, CFEM精准提取变化差异并抑制噪声, BiFPN实现多尺度语义信息的高效融合. 实验结果表明, MS-SwinCE在LEVIR-CD数据集上, 相较于ChangeFormer, IoU提升了1.18%, F1分数提升了0.70%, Precision提升了0.32%, Recall提升了1.06%; 在WHU-CD数据集上, 相较于BIT, IoU提升了1.84%, F1分数提升了1.06%, Precision提升了0.47%, Recall提升了1.66%. 此外, 在保持较高精度的同时, 模型参数量为31.66M, 明显低于精度相近的ChangeFormer (41.03M), 在精度与效率间实现了良好权衡. 消融实验进一步验证了各模块的有效性与协同增益.

    Abstract:

    Remote sensing image change detection plays a vital role in urban expansion and disaster monitoring. However, existing methods still exhibit limitations in feature extraction capability, resistance to pseudo-change interference, and multi-scale feature fusion. To this end, this study proposes MS-SwinCE, a change detection model that integrates multi-scale Swin Transformer, a contrastive feature enhancement module (CFEM), and a bi-directional feature pyramid network (BiFPN). The model enhances long-range dependency modeling via the local window and shifted mechanism, with CFEM accurately capturing change differences and suppressing noise, and BiFPN efficiently fusing multi-scale semantic information. Experimental results demonstrate that MS-SwinCE outperforms ChangeFormer on the LEVIR-CD dataset, with an improvement of 1.18% in IoU, 0.70% in F1 score, 0.32% in Precision, and 1.06% in Recall. On the WHU-CD dataset, MS-SwinCE achieves an increase of 1.84% in IoU, 1.06% in F1 score, 0.47% in Precision, and 1.66% in Recall compared to BIT. Additionally, while maintaining high accuracy, MS-SwinCE has a parameter count of 31.66M, notably lower than ChangeFormer (41.03M) with similar accuracy. Thus, an effective balance between accuracy and efficiency is achieved. Ablation studies further confirm the effectiveness and synergistic gain of each module.

    参考文献
    相似文献
    引证文献
引用本文

朱永进,李熹,李永胜,苏湘粤. MS-SwinCE: 融合多尺度Swin Transformer与对比特征增强的遥感图像变化检测.计算机系统应用,2025,34(12):67-74

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-13
  • 最后修改日期:2025-06-12
  • 录用日期:
  • 在线发布日期: 2025-10-21
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号