﻿ 面向广义质量体系的软件质量贝叶斯评估模型
 计算机系统应用  2019, Vol. 28 Issue (4): 242-246 PDF

Bayesian Model for Software Quality Assessment Based on Generalized Quality Characteristics
TU Jun-Xiang, DI Liang, LI Zhi-Wei
College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
Foundation item: Project of Fuzhou Municipal Science and Technology Bureau (2017-G-71)
Abstract: Existing software quality assessment models mainly focus on the basic quality characteristics of software systems, and ignore characteristics of customer value and developer organization. Therefore, these models can not evaluate the quality of software systems comprehensively and scientifically. This study characterizes the complex dependence relationships among generalized quality variables by Bayesian network, and constructs a more targeted quantitative model for software quality evaluation. The application shows that the model can comprehensively assess the generalized quality characteristics, make a reasonable evaluation of software quality, and find out the key factors affecting software quality based on the reverse reasoning function of Bayesian network.
Key words: software quality assessment     quantitative model     Bayesian network     Bayesian inference     generalized quality characteristics

1 贝叶斯网络

 $P(X) = \prod\limits_{i = 1}^n {P({x_i}|{P_{ai}})}$ (1)
2 软件广义质量特性体系

 图 1 软件质量度量的广义质量特性体系

3 基于贝叶斯网络的软件量化评估 3.1 软件质量评估的建模过程

 图 2 基于贝叶斯网络的软件质量评估

3.2 贝叶斯网络构建

 图 3 软件质量评估的贝叶斯网络结构

3.3 贝叶斯网络的参数确定

(1) 对于贝叶斯网络BN=(G, θm), 从θm的某个初始值θm0开始迭代(初始值可随机产生);

(2) 求出不完整数据集的充分统计量的期望值, 对其进行修正, 成为完备数据;

(3) 基于修正后的数据重新计算θm.

3.4 软件质量评估及诊断

4 应用实例

5 结论

 [1] 吴颖. 基于CMMI的软件质量度量研究. 现代信息科技, 2018, 2(6): 21-23. DOI:10.3969/j.issn.2096-4706.2018.06.009 [2] 刘振宇. 软件质量标准的发展与应用. 软件产业与工程, 2014(6): 10-14. DOI:10.3969/j.issn.1674-7933.2014.06.010 [3] 曹毅, 赵波, 张利锋. 基于AHP的软件质量模糊综合评价研究与实现. 计算机测量与控制, 2013, 21(12): 3306-3308, 3328. DOI:10.3969/j.issn.1671-4598.2013.12.047 [4] 汪海涛, 刘帅, 姜瑛, 等. 一种基于模糊物元评价法的构件质量度量模型研究. 云南大学学报(自然科学版), 2015, 37(1): 31-42. [5] Baggen R, Correia JP, Schill K, et al. Standardized code quality benchmarking for improving software maintainability. Software Quality Journal, 2012, 20(2): 287-307. DOI:10.1007/s11219-011-9144-9 [6] Junior FRL, Osiro L, Carpinetti LCR. A comparison between fuzzy AHP and fuzzy TOPSIS methods to supplier selection. Applied Soft Computing, 2014, 21: 194-209. DOI:10.1016/j.asoc.2014.03.014 [7] Kumar A, Shankar R, Debnath RM. Analyzing customer preference and measuring relative efficiency in telecom sector: A hybrid fuzzy AHP/DEA study. Telematics and Informatics, 2015, 32(3): 447-462. DOI:10.1016/j.tele.2014.10.003 [8] Gauger U, Turrin S, Hanss M, et al. A new uncertainty analysis for the transformation method. Fuzzy Sets and Systems, 2008, 159(11): 1273-1291. DOI:10.1016/j.fss.2007.12.027 [9] Turunen E. Algebraic structures in fuzzy logic. Fuzzy Sets Systems, 1992, 52(2): 181-188. DOI:10.1016/0165-0114(92)90048-9 [10] Cheng J, Greiner R, Kelly J, et al. Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 2002, 137(1-2): 43-90. DOI:10.1016/S0004-3702(02)00191-1 [11] Groth KM, Swiler LP. Bridging the gap between HRA research and HRA practice: A Bayesian network version of SPAR-H. Reliability Engineering & System Safety, 2013, 115: 33-42.