使用轻便网络互连协议的嵌入式串口服务器®

李 伟、余

(河南工业职业技术学院 计算机工程系, 南阳 473000)

摘 要:目前电子仪器仪表大量采用串行方式做为通信接口,无法连入计算机网络,设计了一种嵌入式串口服务 器模块. 模块以微处理器 S3C2440A 为核心处理芯片, 使用以太网控制器 RTL8019AS 和电平转换芯片 MAX3232 处理转换网络数据和串行数据,并对轻量级 IP 协议 LWIP 在 uC/OS-II 操作系统上进行移植, 使串口服务器能够 在网口和串口间实现双向数据透传. 实验证明该模块传输数据实时准确, 能够满足实际工程的需要.

关键词: 串口连网服务器; 嵌入式系统; 数据透传; LWIP; 协议转换

Embedded Ethernet Serial Server Using Light-Weight IP Stack

LI Wei, YU Sen

(Department of Computer Engineering, Henan Polytechnic Institute, Nanyang 473000, China)

Abstract: At present the electronic instrument almost takes serial port as the communication interface, it cannot accessing into the network, the design of an embedded serial server module is proposed. The module employs embedded chip S3C2440A as the microprocessor, takes Ethernet controller chip RTL8019AS, level conversion chip MAX3232 to convert the data, and transplants Light-weight IP Stack protocol into uC/OS-II operating system. Transparent data transmission realized between serial port and Ethernet. The experiment shows that this device runs stably and meets the need of communication in industrial environment.

方便地连网.

Key words: ethernet serial server; embedded system; transparent transmission; LWIP; protocol conversion

随着工控自动化程度的提高和物联网技术的发展, "让全部设备连入网络"逐渐成为可能,将工农业生产 过程中的各种传感器、控制器等电子设备连入计算机 网络以实现数据共享与远程管理,已经成为大势所趋[1]. 然而由于历史原因,目前大部分设备的通信接口仍然 只有异步串行通信接口(RS-232C/485、CAN), 这种接 口数据的抗干扰能力较差、传输速率相对较低 (100kbps)、信号有效半径较短(约 15 米), 不适用于计 算机实时控制,严重影响了系统效率[2]. 因此,在不改 变设备硬件结构的基础上, 如何将现有设备串口数据 转换为 TCP/IP 数据, 以方便连入以太网, 是目前亟待 解决的一个问题.

系统整体设计

为了解决大量的电子仪器仪表采用串行方式通

芯片 S3C2440A 做为核心处理器, 采用以太网控制芯 片 RTL8019AS 处理网络数据、电平转换芯片 MAX3232 处理串口数据, 使串口服务器能够在网口

信、数据无法连网的问题,需要在工业以太网和本地

电子设备之间进行数据的转换. 在继续使用原有电子

设备、不改变其硬件配置及各种数据接口的原则下,

通过增加独立的外置硬件模块设备,将面向连接的

RS232 串口链路数据封装打包成面向无连接的以太网

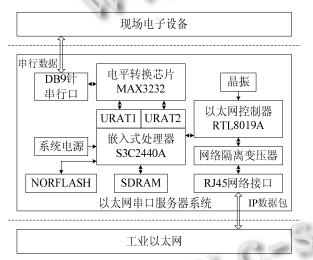
IP 通信数据在网络上进行传输. 这种以太网串口服务

器起到桥接的作用,将非计算机类电子设备通过串口

的嵌入式串口服务模块. 系统在硬件方面使用嵌入式

基于上述思想,设计了一种价格低廉、结构简单

和串口间实现双向透传.一方面,数据上行时 S3C2440A将MAX3232发送过来的串行链路信息封装


① 收稿时间:2015-01-04;收到修改稿时间:2015-02-16

成网络数据帧, 并通过 RTL8019AS 发往计算机网络; 另一方面, 在下行通道中微控制器将收到的以太网数 据解包, 分离出数据和相应的串口设备号, 然后通过 MAX3232 的相应通道发往串口设备^[3].

软件方面系统基于 uC/OS-II 操作系统, 并且对轻 量级网络协议 LWIP 进行裁剪和移植、只保留其中最 核心的网络协议分析部分[4,5], 以实现低内存、低成本 的目标.

2 硬件电路组成

以太网串口服务器实现串行接口电路与网络之间 的数据格式转换. 硬件电路主要分为三个部分: 嵌入 式最小工作系统、串口功能单元、网口功能单元,并 配置有 RJ45 网络接口和 DB9 针串行数据接口. 基于 嵌入式微处理器的以太网串口服务器硬件组成如图 1 所示.

以太网串口服务器组成原理框图 图 1

2.1 嵌入式最小工作系统

嵌入式最小工作系统包含微处理器和扩展存储部 分、电源单元等, 实现数据处理、转发和接口控制等 功能. 嵌入式核心系统采用 RISC 微处理器 S3C2440A, 其工作稳定, 抗干扰能力强, 功耗低和功能单元丰富.

另外, 由于串口数据速率远远低于以太网数据传 输速率, 在硬件上需要扩展外置FLASH存储器为数据 收发建立缓冲,缓冲区以先入先出的队列形式实现, 避免因为网络数据传输与串口数据传输速率不匹配而 造成的丢包现象. 微处理器的 A/D 复用引脚连接扩展

存储时、需要配置地址锁存器、以解决 CPU 和存储器 之间数据通信速率不一致的问题.

使用系统电源电路将 5V 电源变压为 3.3V 稳压电 源给各元器件供电. 电源电路包括时钟级数单元和电 源转换单元, 分别为硬件系统提供复位、时钟和供电 支持.

2.2 网口功能单元

网口功能单元主要实现以太网控制芯片在微处理 器的控制下收发处理网络数据, 其核心部分采用在嵌 入式行业广泛使用的 RTL8019AS 芯片[6]. RTL8019AS 芯片遵循 Ethernet II 与 IEEE802.3 协议,是一款被广泛 使用的 10Mbps 网卡. 内置了 16KB 的 SRAM, 用于收 发缓冲,降低对主处理器的速度要求. 为了隔离外界 信号干扰, 获得稳定的网络数据, 在 RTL8019AS 和标 准 RJ45 网络接口之间增加网络隔离变压器. 网络接口 单元电路如图 2 所示.

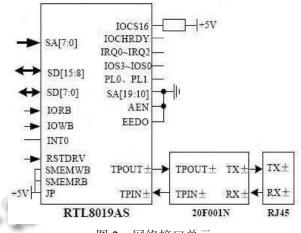


图 2 网络接口单元

2.3 串口功能单元

使用 S3C2440 芯片内置的两路独立 UART 接口接 连 DB9 针串口、需要注意的是、RS232 有效电平范围 为±15V, 而嵌入式系统中采用的 TTL 逻辑电平为 0V-5V, 因此需要使用逻辑电平转换芯片 MAX3232 实 现 TTL 电平与 RS232 电平间的转换[7].

MAX3232 芯片内部包含两路电平转换通道, 最 小数据传输速率为 250kbps, 静态电流只有 300uA, 功 耗低, 且具有内置的静电保护电路, 可以抑制 15kV 的 静电电压, 系统接口电路实现非常简单, 只需要 4 只 0.1uF 的电容. 串口单元电路如图 3 所示.

Research and Development 研究开发 245

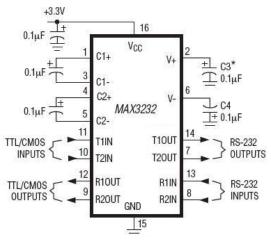


图 3 串口单元电路

3 软件设计方案

3.1 uC/OS-II 及 LWIP 的移植

uC/OS-II操作系统是业界非常流行的嵌入式操作 系统, 它效率高、体积小、实时性高、扩展性强, 是中 小型嵌入式设备首选的操作系统. uC/OS-II 对各种嵌 入式微处理器的移植相对比较简单, 在本设计中微处 理器选择 S3C2440A, 只需要在与处理器相关的目录 下修改关于处理器型号的常量、宏定义.

考虑到系统内存受限, 必须对 TCP/IP 协议进行精 简. LWIP 是一套以低端嵌入式网络产品为应用场景的 开源 TCP/IP 协议, 在保持网络协议基本功能的基础上 裁剪了大量的可选功能,以减少对系统资源的占用. 它移植接口简洁清晰, 便于移植入各种操作系统中.

3.2 数据透传应用软件的实现

串口服务器模块的应用软件主要实现串口数据和 网络数据的转换管理过程, 这是本系统的重点和难点, 软件系统采用经过 GNU 扩展的 C语言编程, 在嵌入式 操作系统下实现, 主要任务是将以太网络发送来的数 据缓存、解析和打包使其转换为串行数据, 然后发送 到对应的串行链路上; 反之, 将现场设备发送来的串 行数据以 UDP 格式封装处理使其转换为可以在以太 网上传输的数据[8].

上电工作之后,应用程序对整个系统进行初始化, 包括对微处理器初始化、时钟振荡器设置、I/O 口设置、 定时器初始化和片内寄存器初始化, 并且要规定每个 串口通道的通信格式.

在透明传输模式中, 为将要转发的串行数据建立 队列缓冲区, 在内存中开辟 6KB 空间的无符号字符型

数组空间, 使用队列头指针、队列尾指针完成数据的 接收和转发, 初始化时头指针和尾指针指向缓冲区位 置相同, 说明没有待转发数据.

接收串行数据时,数据填充到缓冲队列,并修改 队列头指针、队列尾指针指向. 系统检测到待转发串 口数据字节数不为零时,则将头指针和尾指针作为参 数传递给 LWIP 提供的系统 API 函数^[9], 以 UDP 协议 的格式对发送数据进行封装并转发, 发送完成后, 更 新指针指向.

接收网络数据时, 在前述移植到系统中的 LWIP 协议找的基础上,调用 LWIP 协议栈提供的 API 通信 接口函数, 并使用串行数据发送中断, 对数据包去掉 以太网帧头、IP 首部、UDP 首部, 并分离出串口通道 号和对应得串口数据,将串口数据发往对应的串口通

以太网和串口之间数据交换过程如图 4 所示.

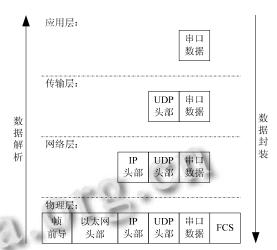


图 4 以太网口和串口之间的数据关系

4 嵌入式串口服务器连网方案

通过嵌入式串口服务器将现场设备连入以太网, 网络拓扑通常有以下三种结构, 如图 5 所示. 第一种 组网形式较为简单, 不需要使用计算机进行控制. 第 二、三种组网形式, 只具有串行接口的设备通过串口 服务器将数据发送到了计算机网络,同时控制主机与 各串口设备间形成了一个简单的星型拓扑结构网络, 很容易实现建网及管理,也方便诊断和隔离故障[10].

实验结果及分析

为了尽最大可能模拟实际工作场景对系统进行评

246 研究开发 Research and Development

测、使用天嵌公司出产的 ARM9 嵌入式开发板 TQ2440 做为串口设备、串口服务器通过 DB9 串口与 其连接, 通过网络接口 RJ45 接入计算机. 串口数据格 式为8位数据位、1位停止位、无硬件流控、无奇偶 校验, 分别在 1.2kbps、2.4kbps、9.6kbps、19.2kbps、 57.6kbps、115.2kbps 等常用波特率下测试系统工作状 态. 模拟环境搭建框架如图 6 所示.

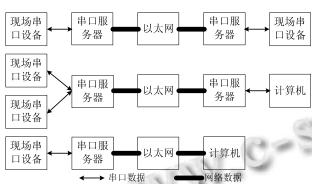
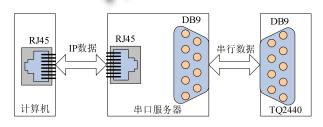



图 5 嵌入式串口服务器组网结构

实验环境框架图

在串口做为发送端和接收端两种工作场景下,用 串口/网口调试软件 USR-TCP232 单次发包 512 字节数 据, 发送时间间隔 10ms, 共连续发送 1MB 数据量后, 测试查看丢包/误码情况, 结果如表 1 所示.

表 1 串口服务器数据转发测试结果

串口	1	场景1	19.3	场景 2		
波特率	串口	网口	\U 77	串口	网口	\U 77
(kbps)	发送	接收	误码	接收	发送	误码
1.2	1MB	1MB	0%	1MB	1MB	0%
2.4	1MB	1MB	0%	1MB	1MB	0%
9.6	1MB	1MB	0%	1MB	1MB	0%

19.2	1MB	1MB	0%	1MB	1MB	0%
57.6	1MB	1MB	0%	1MB	1MB	0%
115.2	1MB	1MB	0%	1MB	1MB	0%

从表 1 可以看出, 在常用波特率下, 网口和串口 通过串口服务器接收/发送的数据量是一样的, 没有丢 失数据和出现误码,可以满足工业应用.

6 总结

使用轻便 IP 协议栈的嵌入式串口服务器, 硬件简 单,成本低廉,无需更换现有串口设备.软件设计基 于开源嵌入式操作系统 uC-OSII, 且移植了 LWIP 协议 栈, 系统实时性好. 实验证明, 数据传输实时准确, 符 合工业控制应用的要求.

参考文献

- 1 沈雁,戴瑜兴,汤睿.采用嵌入式及SSL的多用户安全型串口 服务器设计.计算机系统应用,2011,20(7):221-224.
- 2 徐彦军,温宗周.基于串口设备的嵌入式 Web 服务器系统. 计算机系统应用,2012,21(10):22-26.
- 3 李毅.嵌入式串口服务器的设计与实现[硕士学位论文].北 京:北京交通大学,2012.
- 4 Jean JL.嵌入式实时操作系统 uC/OS-II.邵贝贝译.北京:北京 航空航天大学出版社,2003.
- 5 肖利平.基于 LWIP 的嵌入式串口服务器的设计与实现.电 子科技,2009,22(5):11-13.
- 6 夏伏洋,张曦煌.基于 ATmega128 嵌入式网络接口的设计与 实现.计算机工程与设计,2007,28(2):415-417.
- 7 袁航空,张劲松,吕露.基于 CS6209 的串口服务器/交换机设 计研究.电视技术,2013,37(3):78-81.
- 8 王海勇.基于 ARM9 的嵌入式多串口服务器设计.化工自动 化及仪表,2013,40(3):372-376.
- 9 蔡骏,王敏.基于 CPCI 总线的串口服务器模块设计与实现. 计算机与网络.2013.19:54-57.
- 10 周超.基于 Cortex M3 的以太网串口服务器的设计与实现 [硕士学位论文].武汉:武汉理工大学,2012.

Research and Development 研究开发 247