
 计 算 机 系 统 应 用 2009 年 第 6 期

 134

BPEL 流程监视的可视化实现①
孙 崝 叶世阳 魏 峻 (中国科学院软件研究所 软件工程研究开发中心 北京 100190)

Implementation of Visual BPEL Process Monitoring

Zheng Sun, Shiyang Ye, Jun Wei (Institute of Software, Chinese Academy of Sciences, Beijing 100190)

Abstract: When a BPEL process is executed, it is necessary to dynamically monitor the process. BPEL is a executable

language, which is not suitable for visual monitoring. On the other hand, BPMN is designed to visually
describe business process and is more intuitive for monitoring. To visually monitor a BPEL process,
transformation from BPEL to BPMN is necessary. However, current study of transformation from BPEL to
BPMN does not support the transformation of “link” activity. Besides, no work has been done to add
supplementary information into BPMN during transformation. In this paper, we transform nested BPEL
process into a flat BPMN process graph without hierarchy through applying a flattening strategy. Especially,
we analyze various scenarios of the transformation of link activity, and provide a method to deal with it.
Besides, we analyze the mapping between BPEL activities and BPMN graph, through which we found out that
some supplementary information cannot automatically obtained from BPEL process. These supplementary
information need to be added during transformation. At the end of this paper, we present the structure of our
monitoring tool which is based on our transformation algorithm.

Key words: BPEL; BPMN; flatrening strategy; link acivity

1 Introduction
With the maturation of SOA and Business Process

Manage technology, Process-Oriented develop is incre-
asingly being used in a wide range of applications. WS-
BPEL[1] is an important specification for composing
services in services computing. BPEL composes services
into complex business process. When a BPEL process is
executed, there is a need to dynamically monitor the
process as well as present the monitoring information
intuitively in the form of process diagram. However, BP-
EL is an executable language, with a low abstraction lev-
el, which is not suitable for visual monitoring. BPMN[2]
is a language designed to visually describe business
process, by International Standard Organization BPMI. It
specifies a set of standard graphical notations in a high

abstraction level and is more intuitive than BPEL.
Besides, one goal of BPMN is to visually depict business
process execution language, such as BPEL with
business-oriented notations[2]. Therefore, BPMN is more
suitable for visual process monitoring and it is a good
idea to transform BPEL to BPMN when implementing
the visual BPEL monitoring tool.

However, the transformation does not support all the
complex structures from BPEL to BPMN well, such as
the link structure. In addition, there is no precise analysis
of the mappings between BPEL activities and BPMN
annotations. Because these mappings are not one-to-one
and there is information in BPMN that is not contained in
BPEL, such as the annotation coordination and size.
More work must be done while transforming from BPEL

① Supported by the National Grand Fundamental Research 973 Program of China under Grant No.2009CB3070; National High-Tech

Research and Development Plan of China under Grant No.2007AA010301

2009 年 第 6 期 计 算 机 系 统 应 用

 135

to BPMN.
In order to solve these problems, we design a

transformation algorithm. By applying a top-down
flatting strategy, we can flatten the nested BPEL process
flow into a flat process graph without hierarchy.
Especially, we discuss possible scenarios of the
transformation of “link” activity, and provide an
algorithm to deal with it. Meanwhile, we analyze the
mapping between BPEL activities and BPMN
annotations, and add essential supplementary information
into BPMN process diagram during the course of
transformation.

Finally, we implement the transformation algorithm
in our visual BPEL process monitoring tool, which is
capable of transforming BPEL to BPMN and visually
monitoring business process execution.

The rest of the paper is organized as follows.
Section 2 discusses the related work. In Section 3, we
discuss the transformation from BPEL to BPMN, in
which, we focus on the flatting algorithm and link
activity transformation. Besides, we analyze the mapping
between BPEL activities and BPMN annotations, and
method to add supplementary information to BPMN.
Section 4 introduces our visual BPEL monitor tool, and
finally Section 5 concludes our paper.

2 Related Work
There has been much work on the transformation

from BPMN to BPEL, however little has been done from
BPEL to BPMN. Although this transformation has been
done by Together -a model building tool by Cor. Borland
and STPBPMN-a open source project, they failed in
integrity of the transformation and lacked the support for
structure “link”. Besides, the BPMN, got from BPEL,
keeps nested structure, which is disadvantageous for
analysis and communication.

Jan Recker and Jan Mendlings in Refs.[3,4]
proposed three strategies for transformation from
Block-Oriented modeling language to Graph-Oriented
modeling language, including Flattening, Hierarchy-
Preservation, and Hierarchy-Maximization. These
strategies are proposed for general transformation from
block structure to graph structure, not specific to any

process modeling language. Thus, no special mapping
from BPEL activities to BPMN elements is discussed. In
this paper, we apply and improve the flattening strategy
in the transformation from BPEL to BPMN and make it
the foundation of our algorithm.

3 The Translation from BPEL to BPMN
The primary goal of BPMN is to provide a notation that

is readily understandable by all business users [1]. BPMN
based on Directed Graphs and has visual appearance. BPEL
focuses on the ability of execution, and is restricted by
syntax. In a word, BPEL has less expressive power than
BPMN. We will apply and improve flatting strategy [4] and
specify transformation from BPEL to BPMN.
3.1 The mapping between BPEL and BPMN

By analyzing elements in BPMN and structures in
BPEL, we divide their model elements into 8
categories[5,6]. They are defined as follows:

·Flow objects

·Connection objects

·Swim lanes

·Artifacts

·Reusable information object, such as “variable”
and “correlationSet” in BPEL.

·Coordination and graph information

· Supplementary information, such as version
number, author’s note.

·Complex type information, such as some complex
variables in BPEL, whose schemas need to be defined in
WSDL.

The first 4 categories refer to the basic graph
elements in BPMN. The fifth ensures correct process
execution. The last three categories define supplementary
information.

The BPMN has standard process graph elements,
and every basic element represent a kind of annotation.
With the BPEL-2-BPMN mapping, we can map the
element in BPEL to the corresponding annotation in
BPMN. Besides, the coordination and graph size
information are essential information for the visualization
of BPMN. this information is automatically added during
transformation.

 计 算 机 系 统 应 用 2009 年 第 6 期

 136

Table 1 The mapping between BPEL and BPMN
in the eight aspects

 Elements in
BPEL

Elements in BPMN

<receive>,<reply
>,<invoke>

Activity： Task

<scope> Activity： SubProcess

<while> Activity： Loop

 Activity: Multi instance

<compensate> Activity: Compensation

<wait>,<onMess
age>

 (Event)

<while>,<switch
>

XOR (Data-based)

<pick> XOR (Event-based)

 OR

<flow> AND

1. Flow
objects

 Complex

Activities Order sequence flow

<while>
condition,
<case>

conditional sequence flow

<otherwise> default sequence flow

message message flow

2.
Connec-
tion
objects

 association

<process> Pool 3.Swim
lanes Lane

 Data object

 Group

4.
Artifacts

<documentation
>

Text annotation

Assign

Web Service <partnerLink>, <portType>,
<operation>

correlationSet correlation

variable

Property Property

5.
Reusable
informa-
tion
object

propertyAlias

 Shape and size of the graph 6.
coordina-
tion and
graph
informati
on

 Coordination of the graph

7 ． Suppl
ementary
informati
on

 The name of the tool and
version number

8.complex
type
informa-
tion

The definition of
complex
message type

3.2 Description of transformation algorithms
1)Parse the BPEL model into tree structure.
2)Do recursive traversal of all nodes from top down,

and transform the node recursively into BPMN elements.
3.3 “Link” activity
3.3.1 Introduction of link activity

“Link”activity (link) is a flexible element in BPEL

and only appears in flow structure. Link can be used
within concurrent activities to define arbitrary control
structures[1]. When the transition-Condition is meet, the
target activity will be executed. If there are more than one
links pointing to the same target activity, join-condition is
used.

Directed diagram can handle link easily, but not in
BPMN. BPMN requests that every activity’s out-degree
and in-degree can only be 1. Thus, we should use
gateway to realize Link. In this paper, we consider
possible scenarios of “link” and use OR and AND to

realize the transformation.
3.3.2 The algorithm of Link transformation

When processing a node, if this node is the target of
a link, we will check out whether there is a join-
condition. If it’s true, an OR-gateway is added before this
activity, else an AND-gateway is added before this
activity.

If the activity is the source of a link, whether there is
a transition-condition is checked. If it’s true, an
OR-gateway is added after this activity, else an AND-
gateway is added after this activity.

The possible transformations are shown as follows:
1).“link”set transitionCondition：

<flow>
 <link name=”link1”/>
 <invoke name=”A”>
 <source linkName=”link1”

transitionCondition=”c1”/>
 </invoke>
 <invoke name=”B”>
 <target linkName=”link1” />
 </invoke>
</flow>

2009 年 第 6 期 计 算 机 系 统 应 用

 137

2) “link” set no transitionCondition:

<flow>
 <link name=”link1”/>
 <invoke name=”A”>
 <source linkName=”link1”/>
 </invoke>
 <invoke name=”B”>
 <target linkName=”link1” />
 </invoke>
</flow>

3) A target activity with more than one source and

set joinCondition:
<flow>
 <link name=”link1”/>
 <link name=”link2”/>
 <invoke name=”A”>
 <source linkName=”link1”/>
 </invoke>
 <invoke name=”B”>
 <source linkName=”link2”/>
 </invoke>

 <invoke name=”C” joinCondition
=”bpws:getLinkStatus(‘link1’)
and bpws:getLinkStatus(‘link2’)>

 <target linkName=”link1” />
 <target linkName=”link2” />
 </invoke>
</flow>

4). A target activity with more than one source，and

set no joinCondition:
<flow>

<link name=”link1”/>
<link name=”link2”/>
<invoke name=”A”>

<source linkName=”link1”/>
</invoke>

<invoke name=”B”>
<source linkName=”link2”/>

</invoke>
<invoke name=”C” joinCondition

=”bpws:getLinkStatus(‘link1’)
or bpws:getLinkStatus(‘link2’)>

<target linkName=”link1” />
<target linkName=”link2” />

</invoke>
</flow>

3.4 Transformation algorithm
3.4.1 Some definitions

To describe our algorithm precisely, we need a set of
notation and syntax. Jan Mendlings in Ref.[4] provide his
definition. We improve their definition and make it more
adaptable to the transformation from BPEL to BPMN.

Definition 1 (predecessor and successor nodes): N
is a set of nodes,A  N×N is the arcs. The set of

predeces- sor nodes pre(n)={ x N |(x,n)A}, and the

set of successor nodes: success(n)= { x N |(n,x)A}。
Definition 2 (BPMN Process Graph): BPMNPG=(S,

E,F,C,l,A,g). It consists of set of nodes:S, E, E, C, map- ing l:
C {AND;DXOR;EXOR;OR }, a relation:A(S

 计 算 机 系 统 应 用 2009 年 第 6 期

 138

 F C)(E F C), another mapping g :

A expr.

S: the set of start events. |S|  1and sS:pre(s)=
0 successor (s)=1。

E: the set of end events. |E| 1and eE: pre(e)=
1 successor(e)=0。

F: the set of middle event, including Intermediate

Event and Task. fF: pre(f)=1 successor(f)=1。
G: the set of gateway.gG:pre(g)=1 successor(g)>

1pre(g)>1successor(g) =1。
l: the type of gG: AND, DXOR(Databased),

EXOR(Eventbased), OR.

A: the set of SequenceFlow. n(E F G):(n,

n)A()(no reflexive arcs), and x, (E F G):|{(x,y)

|(x,y)A}|=1(no multiple arcs).
c: the guard condition of aA. expr denotes a

logical expression that defines the guard condition.
Definition 3 (BPEL Control Flow): BCF=(Sequen-

ce, Flow, Switch, While, Pick, Scope, Basic, Empty,
Terminate, Link, linkCond, joinCond, decomp). The set
of structured activities:Struct=

Sequence Flow SwitchWhile Pick Scop

e.The set of basic activities: Basisc=

Basic Empty Terminate. The set of activities: Act=

Struct Basisc. LinkAct×Act, linkCond: Link expr, join

Cond:A exp, and decomp: S P(A)\。
Sequence: the set of sequence activities.
Flow: the set of flow activities.
Switch: the set of switch activities.
While: the set of while activities.
Pick: the set of pick activities.
Scope: the set of scope.
Basic: the set of basic activities without terminate

and empty.
Empty: the set of empty activities.
Terminate: the set of terminate activities.
Link: the set of link.
linkCond: the transition condition of link
joinCond: the join condition of link.
decomp: a mapping, from a structured activity to

the set of nested activities which are the sub-activities of

the structured activity.
Definition 4 (join condition): joinCond: Actexpr，as

an activity x, its predecessor activities:

pre(x)={ 1y , … , ny }. joinCond (x) = linkCond

(1y , x)… linkCond(ny , x) (AND), joinCond (x) =

linkCond(1y , x)… linkCond (ny , x) (OR)

Definition 5 (Mapping function map). The transfo-
rmation function map: Basic F.

It defines how to transform the basic activities in
BPEL into BPMN diagram.
3.4.2 Algorithms

The transformation from BPEL to BPMN uses
flatting strategy. It transforms BPEL Control Flow (BCF)
into BPMN Process Graph.(BPG).

Algorithm 1 transforms the whole BPEL process
flow. It defines the root, and transfer the function
transformBCF(activity, predecessor, successor, BPG).
Then do recursive traversal of all nodes from top down.
The recursive traversal will be defined in algorithm 2.
After BPMN graph is generated, function addCoordinate
will add coordination and size for every graph. This
function is essential in transformation. Only with these
essential information, BPMN Process Diagram can be
displayed properly.

Algorithm 1： flatten BCF
flatten(BCF){
Struct 

Sequence Flow Switch While Pick Scope;

S  {s}; E  {e}; F   ; G   ; A 

 ;

root  a; （aStruct  sStruct : decomp(s) = a）
//a: BCF structured activities

 transformBCF (root, s, e, BPG);

for all (1l , 2l)  Link do

//if link activities excise, connect the activities in BPMN

 A  A  { (1g , 2g) };

c(1g , 2g) = linkCond (1l , 2l);

end for
addCoordinate(BPG);
//add coordination and size for every graph
return BPG ;

}

2009 年 第 6 期 计 算 机 系 统 应 用

 139

Algorithm 2 translates activity into BPMN process
graph and connects it with predecessor and successor. As
root, it will connect s and e. The last argument BPG
denotes the BPMN Process Graph which has transformed
and this function will base on this graph and do more
transformation.

As the algorithm shows, it will check and deal with
“link” first. The idea how to deal with “link” has been
shown in 3.3.2. Then it transfer 5 functions to deal with 5
structures in BPEL, including sequence, switch, while,
pick and flow. When the activity is Scope, it just directly
handles the sub-activities that excise in scope. Basic
activities will be mapped into BPMN graph directly with
the function map. Besides, activities “empty” and
“terminate” will be deal with as show in algorithm.

Algorithm 2： transformBCF
transformBCF(activity, pred, succ, BPG)
{

 if  (1l , activity)  Links then

//if the activity is target in a link.
 l(1g) = joinCond(activity);

 if l(
1g) 1g =DXOR; else 1g =AND; end if

 G  G { 1g }; AA { (pred, 1g) }; pred

 1g ;

end if

if  (activity, 2l)  Links then

 //if the activity is source in a link
l(2g) = linkCond(activity) ;

 if l(2g) 2g =DXOR; else 2g =AND; end if

 G  G  { 2g }; A  A  {(2g , succ) };

2g  succ;

 end if
else if activitySeq then

 //transform Sequence activities
BPG  transformSeq(activity, pred, succ,

BPG);
else if activity  Switch then

//transform Switch activities
 BPG

transformSwitch(activity, pred, succ, BPG);
else if activityWhile then

// transform While activities
 BPG 

transformWhile(activity, pred, succ, BPG);

else if activityPick then
 // transform Pick activities

 BPG 
transformPick(activity, pred, succ, BPG);

else if activityFlow then
 // transform Flow activities

 BPG 
transformFlow(activity, pred, succ, BPG);

else if activityScope then
 // transform Scope activities

 BPG 
transformBCF(decomp(activity), pred, succ, BPG);
else if activityBasic then

 //definition 5 map. Transform basic
activities

 FF {map(activity)};

AA {(pred, activity), (activity, succ)};
else if activityEmpty then
 //transform Empty

 AA {(pred, succ)};
else if activityTerminate then
 //transform Terminate

 EE {e}; AA {(pred, e)};
end if

return BPG
}

 There are 5 functions to deal with BPEL structured
activities, including: transformSeq, transformSwitch,
transformWhile, transformPick, transformFlow. We will
use transformPick as an example (Algorithm 3).
Algorithm 3： transform Pick

transformPick (activity, pred, succ, BPG)
{

de  decomp(activity);

G  G  { 1g , 2g };

l(1g) = EXOR; l(2g) = DXOR;

 //add Event-based XOR before activity

A  A  { (pred, 1g) , (2g , succ)};

//and add Data-based XOR after acticity
for all current  de do

BPG  transformBCF(current, 1g , 2g , BPG);

end for
return BPG ;

}

 计 算 机 系 统 应 用 2009 年 第 6 期

 140

3.4.3 Transformation procedure
<sequence>

<switch>
 <case>
 <sequence>
 <receive />
 <while>
 <invoke />
 </while>
 </sequence>
 </case>
 <otherwise>

<sequence><empty
/>

</sequence>
 </otherwise>
</switch>
<scope>
 <pick>
 …
 </pick>

<reply />
</scope>

</sequence>

Fig.1 BPEL process flow and its tree structure

We will use an example to illustrate this procedure.

For clearer description of the BPEL Control Flow, we
parse it into a tree structure (Fig.1). Every node in the
tree is structured activity. The whole procedure is shown
in Fig.2:

1) transfer algorithm1, set s and e, and set root:seq
as the first argument. Then transfer function trans-
formBCF().

2) deal with the activity sequence, transfer function
transformSeq(), and do recursive traversal of all nodes
with function transformBCF().

3) deal with the activity switch, transfer function
transformSwitch(), and add and-gateway.

4) deal with the activity switch.
5) Transform otherwise created in 3).
6) When scope, just transform the nodes below.

Firstly transform pick, and then reply.

step 1 step 2

 step 3 step 4

 step 5 step6

Fig.2 The algorithm procedure

4 Implementation
4.1 System architecture

The architecture is shown in Fig.3. BPEL2BPMN
transformer transform BPEL Model into BPMN Model
and then the BPMN model is delivered to BPEL monitor
graph maker (implemented in actionscript 3.0) through
network communication (tomcat). The graph maker
parses the BPMN model and uses this information to

Root:seq

switc
h

scop
e

switch

se
q

seq pick reply

while empty

invoke

 … receiv
e

2009 年 第 6 期 计 算 机 系 统 应 用

 141

generate process view which is later shown in web page.
Meanwhile, we deploy the BPEL on BPEL driver and
store the runtime information in database (mysql). We get
this information through JDBC and deliver it to control
block in the network. The control block (built by
actionscript 3.0) exchange the information with monitor
information block and refresh the monitor process graph.

Fig.3 System architecture

4.2 Transformation Result

After completing the tool, we transform many BPEL
process Into BPMN graph, and through the graph we can
monitor the corresponding BPEL process visually. We
present a section from a factual BPEL process as follows.
It is a nested BPEL structure with scope and sequence
structure activities. With the tool, we can transform it into
a flat BPMN structure, and then present it in a diagram
visually.

<scope name="SignIn">
 <sequence name="sequenceComponent_1">
 <receive name="n156_4" partnerLink="Front"
portType="tns:TravelPlanPT" operation="logon"
variable="logonRequest" createInstance="yes" />
 <assign>
 <copy>
 <from variable="logonRequest"
part="logonid" />
 <to variable="loginRequest" part="arg0" />
 </copy>
 </assign>
 <assign>
 <copy>
 <from variable="logonRequest"

part="logonpwd" />
 <to variable="loginRequest" part="arg1" />
 </copy>
 </assign>
 <invoke name="n406_5" partnerLink="PLn171_2"
portType="NSn171_2:com.once.adventure.loginservice.Logi
nServicePortType" operation="login"
inputVariable="loginRequest"
outputVariable="loginResponse" />
 <assign>
 <copy>
 <from variable="loginResponse" part="result"
/>
 <to variable="logonResponse"
part="outcome" />
 </copy>
 </assign>
 <reply name="n921_6" partnerLink="Front"
portType="tns:TravelPlanPT" operation="logon"
variable="logonResponse">
 <correlations>
 <correlation set="interaction" initiate="yes" />
 </correlations>
 </reply>
 <assign>
 <copy>
 <from expression="true()" />
 <to variable="connected" />
 </copy>
 <copy>
 <from expression="true()" />
 <to variable="isTraveBooking" />
 </copy>
 </assign>
 </sequence>
 </scope>

 <correlations>

As the graph shows, the nested BPEL process section
is transformed into a flat graph. When the BPEL process is
executing, the tool would get he process’s dynamically
executive message and show that in this graph.

5 Conclusion and Future Work
In this paper, we apply a flatting algorithm and

transform nested BPEL process control flow into flat
BPMN process graph without hierarchy. Especially we
analyze various scenarios of the transformation of link
activity, provide a method to deal with it, and add the

 计 算 机 系 统 应 用 2009 年 第 6 期

 142

method into the transformation algorithm.
Our analysis of the mapping from BPEL process

activities to BPMN process graph element show that the
mapping is not one-to-one, and some supplementary
information in BPMN cannot automatically obtained
from BPEL process. However this supplementary
information is necessary for visual presentation, such as
size and coordination. We add this function in the
algorithm as well.

Finally, we present the structure of our monitoring
tool which is based on our transformation algorithm, and
show the transformation result of link activity.

References
1 Business Process Execution Language for Web Servi-

ces(version 1.1).
2 Business Process Modeling Notation Specification.
3 Recker J, Mendling J. On the Translation between

BPMN and BPEL: Conceptual Mismatch between
Process Modeling Languages. Proceedings of Work-
shops and Doctoral Consortium for the 18th Interna-

tional Conference on Advanced Information Systems
Engineering. Namur University Press, Luxembourg,
Grand-Duchy of Luxembourg, 2006.

4 Mendling JJ, Lassen KB, Zdun U. Transformation
Strategies between Block-Oriented and GraphOrien-
ted Process Modelling Languages. Multikonferenz
Wirtschaftsinformatik 2006. Band 2. GITO-Verlag,
Berlin, Germany, 2006:297－312.

5 Florian J, Susanne L, Gregor Z. Information losses
within the collaborative integration of different process
models - BPML as an XML-based interchange format
for BPMN business process models. Proceedings to
40th Annual Hawaii International Conference on
System Sciences (HICSS'07), 2007.

6 Mendling J, Nüttgens M. Event-Driven- Process- Chain
Markup Language (EPML): Anforderungen zur
Definition eines XML- Schemas für ereignisgesteuerte
Prozessketten. Nüttgens M, Rump F(Ed.): Proce-
edings of the 1st GI Workshop on Event-Driven
Process Chains, Trier 2002:87－93.

