
    计 算 机 系 统 应 用                                                                 2009 年 第 6 期  

 72 

 

一种支持广义服务组合的遗传算法① 
王显志 王忠杰 徐晓飞 莫 同 (哈尔滨工业大学 计算机科学与技术学院 黑龙江 哈尔滨 150001)  

A Genetic Algorithm for Generalized Real-Life 
Service Composition 

Xianzhi Wang, Zhongjie Wang, Xiaofei Xu, Tong Mo 

(School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001) 
 
Abstract: In the last decade, selection and composition of Web services have drawn increasing attentions. However, 

real-life services are not only web services but complicated eco-systems composed of various service elements 
like human, resources, environment, etc, and existing service composition methods cannot be directly applied 
to such real-life service composition scenarios. In this paper, we propose a conceptual model for generalized 
real-life service composition. In this model, service behaviors are abstracted as service components and 
uniformly described by XML. Various service requirements raised by customers are completely listed and 
classified. Based on these works, a genetic algorithm for real-life service composition is presented to select the 
best matching service components and compose them together. The algorithm’s effectiveness of obtaining 
optimal solution is proved by a prototype system.  

Key words: real-life service; service component; classification of service requirements; service composition; genetic algorithm 
   
  

1 Introduction 
Modern service system is a complicated eco-system 

composed of not only software, but also hardware, 
human, resource and environment, opposed to web 
service domain. Service composition in this sense is to 
combine distributed service resources and service 
capability among different organizations following 
certain rules and agreements, thus provides customer 
with integrated service in multiple modern manners. On 
the one hand, by the specialization, automatic classifica- 
tion, linking, and integration of service sections, 
customer is confronted with a huge and integral virtual 
resource, which not only brings forth enjoyment and 
experience that customers have never captured before, 
but also relieves the disadvantageous situation of low 
customer satisfaction caused by limited resources and  

 
 
service methods of single organization; on the other hand, 
through the integration of service capability all-round, 
novel service modes is promising to emerge, thus obtains 
added value impossible for previous single service 
provider, which achieves more extensive share of 
information, service resource and service capability. 
  Traditional composition of service is done manually, 
i.e.,  workers of service organizations choose service 
providers for each section of business process according 
to requirements of customers, then communicate with 
this providers and also the providers communicate with 
each other by means of phone, email, etc. Such approach 
proved to be low efficient as well as under low possibility 
of finding satisfactory composite results under 
circumstances concerning numerous resources, so we 
anticipate this work be done in an automatic manner.

 
① Supported by the National Natural Science Foundation of China under Grant Nos.60803091,60673025
    



2009 年 第 6 期                                                                计 算 机 系 统 应 用 

 73 

Component-based software development (CBSD) 
settles a favorable foundation for automatic service 
composition. To rapidly represent service systems which 
have more complicated processes and much more 
resources, and to make agile reactions to more frequently 
altered service requirements, we encapsulate all relevant 
resources and service behaviors/processes into reusable 
logical units, each called a Service component (SC) [1]. 
SC provides to the outside with service behavior of a 
larger granularity and complicated service systems can be 
established by selecting and compositing these 
pre-defined SCs. 

For software in service system, we encapsulate each 
function into SC for retrieval and invocation, while for 
activities performed by human or machine, SC virtualizes 
them into software functions. The abstract of real life 
service into SC not only facilitates service composition in 
automatic way, but also creates software-form interfaces 
for human/machine interfered operations in real life 
service system. 

After describing service as SC, service composition 
turns into a problem of service components matchmak- 
ing, i.e., how to select a set of customer-satisfied SCs 
from SC repository according to their historical quality 
and Reputation to turn abstract service process into a 
concrete one that can be run directly. 

In this paper, we take customer requirements 
classification as the main concern, and explore automatic 
generalized service composition aiming to improve 
customer satisfaction: Section 2 presents a conceptual 
service composition model under the background of 
modern service industry; in Section 3 and 4, methods for 
describing real life service as SC and customer 
requirements classification is discussed respectively; then 
in Section 5, service composition algorithm base on 
genetic algorithm(GA) is presented and experiments done 
is given in Section 6; finally is the conclusion and view 
for the future. 
 

2 Conceptual Model of Real-Life Ser- 
vice Composition 

The basic structure of service composition (as 
showed in Fig.1) consists three elements: input, output 

and SC matchmaking engine.  
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Conceptual model for service composition 
 
2.1 Input 

(1) Abstract service process 
Web service uses BPEL4WS[2] and BPMN[3] to 

realize Orchestration and Chorography respectively, and 
semantic web service describes process following 
OWL-S[4] specification. But in real life, service usually 
sees human activity as an integral part of its process, so 
we describe abstract process using BPEL4People[5] 
specification with binding sections omitted, i.e., for each 
step of the process, only type of its function is specified 
instead of SC. 

(2) Description of customer requirements  
Ref.[6] suggests acquiring requirement based on 

ontology, i.e., to guide customer to describe realistic 
system comprehensively using enterprise ontology and 
domain ontology so as to quickly acquire and accurately 
express customer requirements in the development 
process of information system; Ref.[7] propose a 
mapping between requirement and resource to solve the 
problem of system requirement description in software 
requirement analysis. However, current solutions for 
require ment acquisition in software domain can hardly 
be applied to service system, which possesses its own 
processes. So description of customer requirements 
should be specially defined. This paper reduces customer 
requirements in service system into several formal and 
reusable patterns and adopts XML for description. More 
detail will be found in Section 2. 

(3) Candidate SC sets 
Ref.[8] uses XML to describe SC library, the result 



    计 算 机 系 统 应 用                                                                 2009 年 第 6 期  

 74 

is each selection will lead to a traverse among all SCs. In 
reality, SC library are designed not for one system alone, 
so we organize SCs to be a two-tier architecture, i.e., 
classify SCs first by service domain, and then by function 
type. Because each step in abstract process has a 
predefined function type, a corresponding group of SCs 
can easily be found as candidates in the library. 

(4) QoS tree  
Ref.[9] extends WSDL[10] to describe QoS informa- 

tion of SC; Ref.[11] makes extension to Service Profile 
part of OWL-S to achieve the same goal. QoS of service 
in real life may be a treelike architecture including basic 
data, QoS dimensions, and QoS indicators. For example, 
SMDA[1] depicts QoS in five dimensions: price & cost, 
time & efficiency, service content, resource & condition, 
risk & credit, each can be subdivided into a set of QoS 
indicators.  

This paper uses QoS tree to describe the 
classification and hierarchy of QoS. Each node of the 
tree comprises calculation formula and basic data, while 
basic data contains references to historic QoS and credit 
repository which will be shown in (5) part of this 
section and the formula takes the effect of obtaining 
QoS value of certain level from calculation on basic 
data or low level value. SCs of different functions may 
have different sets of QoS attributes, so they make 
reference to different QoS tree individuals. Moreover, 
each QoS attribute of SC correspond to a node in the 
referred QoS tree, what creates further flexibility for SC 
QoS definition. 

(5) Historic QoS and credit repository of SC 
All attributes and value of SC can be obtained by 

two steps: firstly, find all QoS attributes of SC in QoS 
tree (see this section (4)) according to its function type, 
then retrieve the historic QoS and credit repository using 
identifier and attribute name of SC to find the 
corresponding record that contains value. 

The historic QoS or Credit value is the weighted 
average of former records. Usually, we apply Normal 
distribution to give one record the value of a farther 
distance to present a weaker weight. For example, (-258, 
258) occupies 0.99 of the whole area of. In we take 259 
points uniformly inside (0, 258), then each height 
represents the weight of each single day in 0~258 days. 

After normalized, we get to historic value.  
2.2 SC Matchmaking Engine 

We view the problem of service matching, which is 
a detailed solution of service composition, as 
combinatorial optimization problem with complex 
constraints. As a stochastic search method which gets 
inspirations from the mechanism of natural selection and 
heredity, GA’s strategy of population search and 
characteristics of information transmission make it 
showing incomparable performance to other traditional 
approaches in combinatorial optimization[12]. Ref.[13] 
designs a multi-objective GA to find a set of pareto 
optimal solutions as the globally optimized fulfillment 
for dynamic service selection; Ref.[14] takes the 
possibility of high fitness in next generation into account, 
and defines recessive fitness function as part of the 
assessment to individuals. The above methods all take 
advantage of GA but they are not applicable for rich and 
personalized customer requirements much, which could 
be significant for service system. This paper modifies GA 
to be customer requirements oriented so that it transforms 
into a SC matchmaking engine in accordance with real 
life service system feature.  
2.3 Output 

We adopt BPEL4People specification to depict the 
binding result due to the same reason with section 
1.1(1).The result of SC matchmaking is that every step in 
service process is designated with a estimated start time 
for execution and filled with one concrete SC. 
 

3 Component-Based Description of Real- 
life Services 

Service process in real life is a flow of a series of 
service behavior and Service behavior can be 
encapsulated into SC, while SC may contains detailed 
processes, so SC and service process have a mutual 
inclusion relationship. Component-based description of 
realistic service includes two parts: component-based 
description of service behavior and expression of service 
process.  
3.1 Component-based description of service behavior 

We define SC in XML format, and the definition 
contains two aspects: 



2009 年 第 6 期                                                                计 算 机 系 统 应 用 

 75 

(1) As the query index for service behavior 
selection, we describe the basic information, state of 
usage, actor (including the provider) of the behavior, and 
the behavior itself in SC definition. 

Actor of the service behavior can be human, 
machine, software or some of them. For example, actor 
of transportation behavior is a group formed by a driver 
and a chuck. Service behavior itself may contain several 
QoS levels conformed to SLA[15] or other criteria. A 
simple example is that there can be two typical QoS 
levels in land-transportation behavior, i.e., ordinary 
transportation and damping transportation, depending on 
type of the goods to be transported. Fig.2 shows the 
description structure of SC. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Description structure of SC 
 

(2) As the call interface for SC execution, description 
of SC includes the generic and specialized interfaces of the 
behavior, task list, and log. Calls for behaviors that need 
human/hardware interference can be implemented 
referring to WS-HumanTask specification[16], which virtua- 
lizes human activity into software activity. 
3.2 Expression of service process 

Similar to web service composition, service 
behavior of SC may be a process composed of many 
other behaviors. We adopt non-binding information 
BPEL4People specification to describe process that 
having human-machine interaction, and store this 
description in a separate file with the same name to the 
SC, so we just make reference to this file in SC definition 
in section 3.1(1). 

4 Classifications and Descriptions of 
Customer Requirements 

Typical Customer requirements includes require- 
ment for bearing time, price, reliability, and credit of the 
service provider. Besides, it may also include require- 
ment for convenience of procurement, response time, 
service period, punctuality, consistence, compensation, 
success rate, and other factors depending on different 
service domains. 

Only customer requirements are finely presented, 
can program comprehend customer goal in a concrete 
way with operability, and then proceed to get a 
continuously improving composition result during SC 
match process by comparing temporal real result with the 
customer expected one. Service system comprises a lot of 
interaction and customer requirements, and is often 
complicated, which can hardly be described one by one, 
so we think about depicting user requirements in a formal 
and reusable manner, that why we do classification. We 
summarize several circumstances that most frequently 
occur in customer requirements to form patterns for 
automatic program processing, and then define priority 
types to describe customer emphasis.  
4.1 Customer requirements classification 

Customer puts forward requirements from either 
local or global angle, or even from a fragment of process 
or discontinuous steps of the process view. Some usual 
customer requirements types and cases in ocean logistic 
service are listed in Table 1. 
4.2 Customer requirements description 

Customer requirements is reflected in service 
process by setting constraints on it, that’s why we can 
summarize customer requirements into several frequently 
used constraint patterns, each of which can be about the 
provider, actor, or QoS metrics of the service. Basically, 
there are three constraints patterns: basic-type constraint, 
compare-type constraint, and rule-type constraint. 
4.2.1 Basic-type constraint 

This type is most frequently used, it’s a pair: Basic 
(Function, Condition). Function is a set of function types, 
and Condition is a triple: Condition (Attribute, 
Arithmetical Relation, Value). 

 



    计 算 机 系 统 应 用                                                                 2009 年 第 6 期  

 76 

Table 1  Customer requirements description 

Category 
Type/constraint 

aspect 
Cases 

1 
Inherent 
constraint of 
the process 

Logistic export service comprises 
five behaviors: orderCabinProxy, 
selectBoxStation, fetchGoods, 
customs, and setinPort. 

2 
Inherent 
constraint due 
to business rule 

If owner exports FCL (Full 
Container Load) goods, we’ll use 
container in land transportation; 
otherwise, we use Flatbed truck. 

3 

Customer 
decision on 
branch of 
process 

If owner selects to send goods to 
boxStation himself, the process 
of logistic export service will not 
include fetchGood behavior. 

Global 

4 
Global scale 
QoS constraint 

The whole process of logistic 
export service should not last for 
more 72 hours.  

5 

Relation of 
single attribute 
among/between 
steps 

Inside fetchGoods, under level 
behaviors getEmptyBox and 
backFullBox must be done by the 
same provider. 

6 

Relation of 
single 
attributes of 
multiple steps 

If getEmptyBox costs more than 
three hours, the time spent on 
backFullBox should be less than 
two hours.  

7 

Relation 
among/between 
multiple 
attributes of 
multiple steps 

If the credit grade of 
orderCabinProxy is lower than 
three, the price of 
selectBoxStation should be no 
more than 400 RMB Yuan. 

8 
total QoS of 
multiple 
steps(not all) 

fetchGoods(including 
getEmptyBox and backFullBox) 
should cost no more than 10 
hours. 

9 

Interaction 
Quality 
between two 
steps 

The good loading time between 
getEmptyBox and backFullBox 
should be no more than 4 hours.  

Partial 

A 
behavior input 
or output 

The format of 
CabinBookingSheet as output of 
orderCabinProxy should be the 
same as the input of 
selectBoxStation. 

B 
Provider of a 
single step 

The service provider of behavior 
customs must be the custom 
broker named HaiLong. 

C 
One attribute of 
one step 

Time spent by backFullBox 
behavior should be less than 4 
hours.  

Single 

D 

Relation 
among/between 
multiple 
attributes of 
one step 

If the time spent is more than 3 
hours, the broken rate must be 
less than 0.01. 

Basic type is subdivided into three types according 
to differences in scope of constraint, as follows: 

(1) Local constraint: subjects to single step of the 
process. Cardinality of Function is one. Case 6 in table 1 
can be presented as Basic ({backFullBox}, (time, <, 2)). 

(2) Global constraint: subjects to the entire process. 
Cardinality of Function equals zero. Case 4 in table 1 can 
be presented as Basic ( , (time, <, 72)). 

(3) Partial constraint: subjects to some steps of the 
process. Function has elements of all function types 
related to these steps. Case 9 in Table 1 can be presented 
as Basic ({getEmptyBox, backFullBox}, (time, <, 4)). 
4.2.2 Compare-type constraint 

This type is defined from the comparative view of 
multiple steps of service process. It’s a triple: Compare 
(Function, Attribute, Arithmetical Relation). Case 5 in 
table 1 can be presented as Compare ({getEmptyBox, 
backFullBox}, provider, =). 
4.2.3 Rule-type constraint 

It’s a pair: Rule (If, Then). If represents pre- 
condition of the rule, and then means the post-condition. 
They are triples of the same format: If (Basic, and, 
Compare); Then (Basic, and, Compare). It can be proved 
that or-logic can be represented by and-logic, and then 
we find it a full logical system taking relations in Basic 
and Compare in count. Case D in table 1 can be presented 
as Rule (({({backFullBox}, (broken rate >, 0.01))}, and, 
 ), ({({backFullBox}, (time, <, 3))}, and,  )). 

If the pre-condition is null, Rule-type constraint falls 
into one or several Basic-type or Compare-type 
constraints. For example, Case 5 in section 3.2.2 can also 
be presented as Rule (null, ( ,and, {({getEmptyBox, 
backFullBox}, actor, =)})). 
4.3 Priority of customer requirements 

Customer requirements classification reduces custo- 
mer requirements into several types of constraints, thus 
simplifies the program logically for service composition. 
Meanwhile, customer may want to define which is more 
important among the constraints and possibly provide 
certain policy related information, so it’s necessary to 
endow each constraint with measurable importance. In 
the view of this necessity, we divide customer constraints 
into four types of priority: mandatory, optional, one from 
many and many from many. 



2009 年 第 6 期                                                                计 算 机 系 统 应 用 

 77 

4.3.1 Mandatory level 
This level is of top priority, if not satisfied, service 

composition will turn invalid, and customer satisfaction 
will be zero.  
4.3.2 Optional level 

Constraints of optional level can either be satisfied 
or not without voting the solution down, but once they’re 
satisfied, customer satisfaction will increase forcefully.  
4.3.3 One/Many form many level 

To define this level, we’d have to give formal 
description of the former 2 levels first: Suppose is the set 
of all constraints transformed from customer require- 
ments, and ( )d c  is the priority of constraint, and let its 

domain be. Then set of all mandatory constraints can be 
represented by { | ( ) 1}mS c d c  , and set of optional 

constraints by { | ( ) 1}oS c d c  , and m oS S S . 

Suppose Sp is a set of multiple constraints, and pS S . 

Let | |pS m and customer want to express message that at 

least n of the m constraints are satisfied as mandatory 
require. It does not mean 'S S  , ' cS S   , ' oS S   , 

and ' pS S stands, but is reasonable in many from many 

meaning. Specially, when 1n  , “many from many” falls 
into “one from many”. 

As for as the relation among these priority levels is 
concerned, if 0n  , “many to many” transforms into 

optional level; similarly, if p oS S , n m stands, and 

“many from many” transforms into mandatory one. 

 

5 A Real-Life Service Composition 
Method Based on Genetic Algorithm 

As a further explanation to the SC matchmaking 
engine we proposed in Section 2.2, this section is 
organized as following: chromosome encoding, the way 
that we encode the individuals in; reality featured 
techniques for evolution, the methods we use to solve 
this specific type of problem; evaluation function, the 
assessment to individual; termination condition, 
concerning when to stop computing; failure tackling, 
what to do when solution fails to find satisfactory 
results; the algorithm, detailed steps of composition; 
experiment and analysis, the experimental verification 
of our plan. 

5.1 Chromosome encoding 
We adopt integer coding with fixed length equal to step 

number of service process, as Fig.3 shows. A gene is a 
specific SC fulfilling the corresponding function of one step 
in process, and a chromosome is an individual in population 
standing for one possible composition result of the solution. 
  
 
 
 
 
 
 

 
Fig.3  Chromosome encoding 

 
5.2 Reality featured techniques for evolution 

The constraints transformed from customer require- 
ment affect performance of GA dramatically on the 
stability of evolving toward the optimal direction. Here 
we introduce evolutionary stability keeping strategy of 
local taboo and correlation degree based gene selection 
for efficient evolution. Other operations like individual 
selecting, crossing, and mutating can be done in ordinary 
manner of GA. 
5.2.1 Local Taboo strategy for evolutionary stability keeping  

As an intelligent optimization algorithm with rando- 
mization and probability features, GA finds its own 
evolutionary direction under the guidance of schema 
theorem, thus decreases computational cost by recursive 
computing within incomplete solution space. But after 
the introduction of customer requirements and with the 
enhancement of customer requirements representation, 
GA gradually loses its directionality which used to be 
relatively stable, and show itself more and more with 
randomized feature.  

This paper suggests local taboo strategy as a 
preliminary solution to ensure the continuously 
improvement of evolution, i.e., do local operations to 
mandatory constraints that involving multiple steps of the 
process. Take rule-type constraint for example, 
suppose 1 2   IF Basic THEN Basic , where 1Basic is about 



    计 算 机 系 统 应 用                                                                 2009 年 第 6 期  

 78 

function A, and 2Basic is related to function B, then we 
say A and B has correlation. If the number of relevant 
functions is low (in this example it’s 2; the maximum 
number needs to be modified depending on specific 
situations), we mark all SC collocations of relevant steps 
that do not satisfy this constraint as a fatal fragment (can 
be continuous or discontinuous). Through full-space 
computing to relevant fragments and eliminating the 
occurrence of these SC collocations in population, we 
save duplicated computation on invalid individuals in 
each recurrence. It’s easy to prove, that this strategy has 
no conflict with the strategy of keep fixed proportion of 
invalid individuals in population, which is frequently 
used in GA to maintain diversity. 
5.2.2 Gene selection by correlation degree 

Local taboo strategy cannot afford checking all 
mandatory constraints to ensure no invalid individual 
occurs when we take computational amount into account. 
In most cases, we check only constraints concerning less 
than 3 steps. Though these constraints count for the 
absolute majority of all constraints, invalid individuals 
are still possible to occur. 

We define the sum of priorities of all unsatisfied 
constraints related to one gene of the selected individual 
as the correlation degree of this gene to these constraints, 
and call it correlation degree for short. For example, the 
correlation degree of the k-th gene of a certain individual 
can be presented as following: 
            ,                (1) 
where mk is the number of constraints relevant to the k-th 
gene, and we further define the mutation probability of 
the k-th gene of a certain individual as a ratio, i.e., the 
proportion of this gene’s correlation degree in the sum of 
all genes’correlation degrees, as follows: 
             ,               (2) 
where Ri is the correlation degree of the i-th gene, and is 
the number of gene one individual contains, which we 
call chromosome length, too. 

Experimentally, it’s of dominant probability that 
customer set mandatory and optional constraints of the 
same type at the same time on single attribute of one 
gene, to represent the lowest and satisfied quality of 
fulfillment respectively. In addition, suppose the 

constraints involving more than one gene just cover all 
attributes of all genes and they are all optional, then we 
get the priority domain of optional constraints as [0, 0.5] 
to ensure at each attribute of each gene, the sum of all 
mandatory constraints’ priorities greater than that of 
optional, thus make sure mandatory constraints are the 
determinative factor of an individual. 
5.3 Evaluation function 

There’s no unified method to deal with optimization 

problem with constraints currently. One generally 
accepted method is Penalty function method, there’re 
also other methods[17]. Ref.[18] combines direct- 
compare method with strategy of keeping self-fitted 
proportion of infeasible solution to tackle constraints, but 
direct-compare method compares two individuals using 
different standards in different situation, what increases 
the complexity of processing; the theoretical basis of 
strategy of keeping self-fitted proportion of infeasible 
solution contains pre-condition of its utilization that 
infeasible solution should take a great proportion in 
diversity space of characteristics, but after local taboo 
strategy, infeasible solutions get really rare. This paper 
defines unified evaluation function as following:  

                               (3) 
where ( )P x and ( )N x represent positive and negative 

measurement of individual fitness respectively, and 
they’re both non-negative functions. ( )F x has the 

following characteristics: 
① If individual x does not violate any mandatory 

constraint, ( ) 0P x  and ( ) 0N x  ; 

② If individual x violate one or more mandatory 
constraints, ( ) 0P x  and ( ) 0N x  ; 

③ As a conclusion, an individual in (1) must get a 
higher fitness than that of the one in (2). 
5.3.1 Positive Measurement of Individual Fitness 

Positive measurement ( )P x is the aspect assessing 

the trend of fitness increasing.  
all max all( ) / ( / (1 ) / )i j j j pP x w w wQ wQ N N           (4)  

1,2,...,i m , 1,2,...,j q  

where m is the number of optional constraints satisfied, 
Wi is the priority of i-th optional constraint satisfied; q is 
the number of QoS attributes of SC, Wj is the weight of 

k iR w  1,2,..., ki m

, /mg k k iP R R  0,1,...,i m

( ) ( ) ( )F x P x N x 



2009 年 第 6 期                                                                计 算 机 系 统 应 用 

 79 

j-th attribute;αis a percentage representing the relative 
weight of non-constraint factors compared with 
constraint;λis a decimal between [0,1] used to represent 
the proportion of comprehensive QoS measure- ment and 
handover times of same provider in total weight of 
non-constraints, and usually λ has a value of 0 or 1 
according to different business domains. 

Equation (4) comprises three parts: the extent that 
the constraints are satisfied, which is our main concern; 
the comprehensive QoS Measurement, whose effect can 
be extremely significant when all constraints are 
satisfied; and handover times of same providers, which is 
designed to embody real life service characteristics in a 
relatively narrow way. 

(1) Comprehensive QoS measurement 
QoS of results is measured in execution time, price, 

credit, and reliability aspects, and the comprehensive value 
is calculated based on the single value of each aspect. 

Each individual is a composite result with schedule, 
and each SC of it is designated with a start time 
representing flexible range. For both SC and individual, 
they are accepted as possible result as long as their 
optimal possible performances fit, so they get possibility 
of failure, too. That’s why we take reliability into account 
representing the possibility of successful execution. 
Suppose is the deadline, and the range of an individual is, 
we apply uniform distribution or normal distribution to 
this range, and the proportion of the area before the 
deadline within that of whole range is the reliability. 
Other three attribute can be obtained directly from SC 
description.  

We adopt the QoS calculation method in Ref.[13] 
for composite process and take the weighted average as a 
comprehensive measurement for QoS. 

(2) Handover times of same provider 
If two adjacent steps of service process have the 

same provider or their providers belong to a same 
business alliance, add 1 to handover time. In some cases, 
services provided by same provider bring potential 
discount or higher quality to customer, so preliminary we 
count it into the positive aspect of factors. 
5.3.2 Negative measurement of individual fitness 

Negative measurement ( )N x assesses the extent that 

the constraints are violated. 
                           (5) 

where nc and no represent the number of the violated cons- 
traints that are mandatory and optional respectively, 
and 0,1,..., oi n . For“n from m”type constraint, the number 

of mandatory constraints violated is the number that satisfied 
constraints number smaller than n, and the number of optional 
constraints violated is , m Max n satisfied number { }. 

5.4 Termination condition 
Easy to see from ( )F x , that the lowest fitness satis- 

fying customer requirements is a positive decimal infini- 
tely close to zero. So we set longest computing time for 
one request according to capacity of SC library and 
workload of the server, to deal with cases the customer 
set the satisfied fitness too high; Besides, we can set 
upper bound to customer defined satisfied fitness 
according to historic analysis or level of membership of 
the customer. Above are the two terminating conditions 
of the algorithm. 
5.5 Failure tackling 

We react from two angles when program failed to 
provide satisfactory results as following: 

①Still return to customer several relatively superior 

results for choice, meanwhile, echo the constr- aints that 
could be too rigorous for each result.  

②Review on matching adjacent step pairs to reveal 

possible restrict factors or nodes leading to global failure. 
Interaction time for web service is usually short and can 
be neglected, but in realistic service, both inside and inter 
SC exist lots of human participation. If SC takes a long 
time to react or feedback to its precedent, we say these 
two SCs have bad interaction performance in time, and 
we should consider replacing SC having the slow 
response with another one, or send advice to its provider 
for improvement to satisfy customer requirements.  
5.6 The algorithm 

By combining generic GA with the above specia- 
lized solution with service feature, we get a new GA base 
algorithm, and call it SC-GA. Service matching process 
of SC-GA has two stages: pre-processing stage and 
execution stage, as follows: 

Pre 1: parse customer requirements description file, 
acquire information of customer initiating this request, 

c o( ) ( )/( + )c iN x n w N N  



    计 算 机 系 统 应 用                                                                 2009 年 第 6 期  

 80 

and then find and parse service process description file 
according to specified business domain. 

Pre 2: retrieve SCs from library according to service 
process description, query relevant information of SC 
from QoS tree and historic QoS and credit repository, and 
finally filter SCs do not satisfy local constraints within 
each candidate SC set.  

Step1: set input parameters, including proportion of 
individuals participating cross operation each time with 
in population, the upper bound of related function types 
of the single mandatory constraint that local taboo 
strategy can apply to, the number of final results rN , and 
the time limit of one execution maxT ; set program internal 
parameters, including the generation count 0gen  , the 

final result set rS  ; Initialize population (0)P under 

local taboo strategy, and compute the fitness of each 
individual, presented by ( )F x . 

Step2: select rN globally best individuals from both 
population of generation gen and rS . 

Step3: if all individuals in rS are satisfactory or 
compu- ting time reaches maxT , algorithm terminates. 

Step4: let 1gen gen  ; 

Step5: select individuals using roulette method 
from ( 1)P gen  to form ( )P gen , ensure the best individual 

in ( 1)P gen  is also in ( )P gen . 

Step6: do cross operation to individuals of ( )P gen  
according to cR and cross rate cP . 

Step7: Select individual from ( )P gen according to 

mutation probability mP , and do mutation operation 

according to the mutation probability of each gene on the 
selected individual mgP . If the mutation results do not 

satisfy local taboo, redo Step 7; 
Step8: Calculate the fitness of each individual 

( )F x in ( )P gen ; 

Step9: goto Step 2. 

 

6 Experiments and Analysis 
To realize service composition in real life, firstly, we 

have to define rules for the specific business domain and 
standards for each type of the SCs including QoS 
architecture, and then attract and gather numerous service 

providers to publish their service ability in form of SC 
onto the Service platform, Finally, service platform takes 
the responsibility of matching different SCs according to 
customer requirements and internal policies and of 
tracking the quality of SCs in execution for making  
advice to service joiners of both sides in the future. 

In prototype system, we define a two-level service 
process with eight top level steps and nine types of 
function. As shown in Fig.4, B and C are paralleled 
branches of A; C is a virtual node or sub-process 
composite by C1 and C2; D and E are optional branches 
of B with historic possibility of P1 and P2 respectively; 
and F is a recurrence of itself in process. 
 
 
 
 
 
 
 

Fig.4  Service process in prototype system 
   

Firstly, we generate sixty to ninety SC descriptions 
randomly in SC library for each function type. All the SC 
descriptions are in accordance with the SC definition in 
section 2.1, and the QoS values of them are showed in 
Table 2. 

Table 2 QoS Range of Randomly Generated SC 

QoS attributes Range of value 

time 10~30 minutes 

cost 200~1000 RMB Yuan 

credit 1~5 grade 

 

Generic 

attributes 

provider BlueStar/MinSheng/Waiwell/FESCO 

Success rate 0.90~1.00 

Broken rate 0.00~0.02 

 

Specialized 

attributes Dead line Manually defined 
 
Secondly, we write programs to generate description 

file for customer requirements according to the 
description model with classification feature we defined 
in Section 4.2. This file contains constraints of multiple 
types with different priorities, as shown in Table 3.  
  Finally, let the result number be 2, we execute our 
algorithm based on the SCs and customer requirements 



2009 年 第 6 期                                                                计 算 机 系 统 应 用 

 81 

description above. The results are showed in Table 4, 
where time point is presented in “Month DD HH:MM” 

format and time length in “HH:MM” format. 
From Table 4, we can see step A gets a designated 

concrete SC which is identified by sc92609500 & level 1 
as part of the composite solution and this SC is supposed 
to execute from 12:30 on Oct. 16 with no float time 
range.  

Fig.5 shows the statistical information during 
genetic process. We can see that the average fitness of 
population keeps a generally steady increase within 150 
generations. Multiple calculations show that this result 
gets a fitness reaching 0.95 of the optimal one. Our 
solution proved fine efficiency in finding optimal results. 

Table 3 Demo constraints in prototype system 

Constraint 

type 

Target 

section 

Constraints Priority 

cost < 800 1 

finishDate < 

1224132913937 
0.2 

A 

succeedProbobility >= 

0.95 
1 

cost < 800 0.4 

time < 1500000 1 B 

creditGrade >= 2 0.3 

time < 1500000 1 

C brokenProbobility < 

0.1 
1 

D/E cost < 800 0.13 

Local 

F time < 1500000 0.21 

cost < 4000 1 

Global All finishDate < 

1224138913937 
1 

C, F cost < 1500 0.22 

creditGrede>=3 1 
Partial 

C1, C2 finishDate < 

1224132913937 
0.3 

Compare B, G 
B.provider= 

G.provider 
1 

Rule 
A, C, 

D, E 

if A.cost < 800 and 

C.provider=D.provider 

then E.cost < 700 

0.4 

Table 4 Service composition results 

sequence 1 2 

A Oct. 16 20:30 ± 00:00  

sc1312 Level1 

Oct. 16 20:30 ±00:00  

sc1312 Level1 

B Oct. 16 20:45 ± 00:04  

sc4515 Level1 

Oct. 16 20:45 ± 00:04  

sc2593 Level1 

C1 Oct. 16 20:47 ± 00:01  

sc2359 Level0 

Oct. 16 20:47 ± 00:01  

sc2359 Level0 

C2 Oct. 16 21:08 ± 00:08  

sc3984 Level0 

Oct. 16 21:08 ± 00:08  

sc5437 Level0 

D   

E Oct. 16 21:04 ± 00:10  

sc4234 Level0 

Oct. 16 21:06 ± 00:05  

sc4234 Level0 

F Oct. 16 21:29 ± 00:09  

sc6093 Level0 

Oct. 16 21:25 ± 00:15  

sc6093 Level0 

G Oct. 16 21:26 ± 00:11  

sc2078 Level0 

Oct. 16 21:27 ± 00:07  

sc2078 Level0 

H Oct. 16 21:42 ± 00:16  

sc4859 Level1 

Oct. 16 21:49 ± 00:14  

sc4859 Level1 

fitness 58.14 57.78 
 
 
 
 
 
 
 
 
 

 
 

Fig.5  Statistics during evolutionary process 
 

7 Conclusion and Future Work 
Current research on service composition is limited to 

web service domain. To integrate realistic service in a 
similar way, this paper puts forward one service composition 
method with classification for customer requirements as the 
main clue. To put it in detail, firstly we make an abstraction 
from realistic service to service component, and propose a 
classification and reduction method for customer 
requirements, and then based on those, give the genetic 
approach as a solution. Tests show that this framework can 
not only generate the scheduling composite results that 



    计 算 机 系 统 应 用                                                                 2009 年 第 6 期  

 82 

satisfy customer requirements, but also ensure fairly nice 
efficiency on finding the optimal results. 

Integration of realistic service is a big area. This paper 
emphasizes on service composition regarding SC 
functionality more as a query index. For future work, we 
will continue to define more reasonable genetic techniques 
and evaluation methods. We will anticipate a consummation 
in exploring the generic practices or enhancing methods that 
may exist when we consider service related feature a critical 
clue in tackling service composition problem using 
intelligent optimization algorithms. Furthermore, as a basis, 
we will pay effort on extracting meaningful information in 
realistic service to form simpler and efficient service 
component description. 

References 
1 Xu XF, Wang ZJ, Mo T. Methodology for Service 

Engineering. Computer Integrated Manufacturing 
Systems, 2007,13(8):1457－1464. 

2 http://www.oasis-open.org/committees/wsbpel. 
3 http://www.bpmn.org/ Documents/IntroductiontoBPM 

N.pdf. 
4 http://www.daml.org.services/owl. 
5 http://xml.coverpages.org/bpel4people.html. 
6 Jin Z.Ontology-Based Requirements Elicitation. Chin- 

ese Journal of Computers, 2000,23(5):486－492. 
7 Wen BL, Zhang Q, Ma SB. A Requirement Description 

Method Based on Resources. Computer Engineering & 
Science, 2008,30(10):135－138. 

8 Yao QZ, Li XL, Meng L. The research of component 
library management framework based on XML. 
Computer Engineering and Applications, 2006,42(21): 
78－80. 

 
 
 
 
 
 
 
 
 
 

9 Chen YP, Li ZZ, Guo ZS, Jin QX, Wang C. Service 
Selection Algorithm Based on Quality of Service and 
Its Implementation for Web Services Composition. 
Journal of Xi’an Jiao Tong University, 2006,40(8):897
－905. 

10 http://www. w3.org/TR/wsdl. 
11 Wang JH. Extension for Semantic Web Services 

Description Based on OWL-S. Journal of Guangxi 
Normal University (Natural Science Edition), 
2008,26(1):158－161. 

12 Zhang LY, Luo G, Lu LN. Genetic Algorithms in 

Resource Optimization of Construction Project. 

Journal of Tianjin University, 2001,34(2):188－192. 

13 Liu SL, Liu YX, Zhang F, Tang GF, Jing N. A 

dynamic Web services selection algorithm with QoS 

global optimal in Web services composition. Journal 

of Software, 2007,18(3):646－656. 

14 Feng D, Lu C. Constrained optimization research 

based on the additional recessive inheritance of gene- 

tic algorithm. Henan Science, 2005,23(6):884－887. 

15 http://www.sla-zone.co.uk/index.htm. 
16 http://download.boulder.ibm.com/ibmdl/ pub/software 

/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf. 
17 Sun YF, Zheng JQ, Wang DX, Wu H. A Survey of 

constraint optimization method based on genetic 
algorithm. Journal of Northern Jiao Tong University, 
2000,24(6):14－19. 

18 Lin D, Li MQ, Kou JS. A GA-Based Method for 
solving constrained optimization problems. Journal of 
Software, 2001,12(4):628－632.  

 
 

 

 

 

 

 

 

 




