• 当期目录
  • 优先出版
  • 过刊浏览
  • 点击排行
  • 下载排行
  • 综述文章
    快速检索
    过刊检索
    全选反选导出
    显示模式:
    2022,31(11):1-9, DOI: 10.15888/j.cnki.csa.008802
    [摘要] (340) [HTML] (192) [PDF 1.26 M] (448)
    摘要:
    图神经网络作为一种新的深度学习模型, 被广泛运用在图数据中, 并极大地推动了推荐系统、社交网络、知识图谱等应用的发展. 现有的异构图神经网络通常事先定义了多条元路径来学习异构图中的复合关系. 然而, 这些模型通常在特征聚合步骤中只考虑单条元路径, 导致模型只关注了元路径的局部结构, 忽略了元路径之间的全局相关性; 还有一些模型则是忽略掉了元路径的中间节点和边信息, 导致模型无法学习到元路径内部的语义信息. 针对以上问题, 本文提出一种基于元路径的图Transformer神经网络(MaGTNN). 该模型首先将异构图采样为基于元路径的多关系子图, 利用提出的位置编码和边编码的方法来获取元路径中的语义信息. 随后使用改进的图Transformer层计算出目标节点与其元邻居的相似度, 并利用该相似度来聚合其所有的元邻居信息. 在3个公开数据集的节点分类和节点聚类任务中, MaGTNN均高于最新的基准模型.
    2022,31(11):10-20, DOI: 10.15888/j.cnki.csa.008786
    [摘要] (216) [HTML] (77) [PDF 3.09 M] (275)
    摘要:
    在工程领域, 作业人员通常需要面对刺激分布不均的复杂信息界面, 并执行相关的交互任务. 作业人员的视觉注意力分配已被证明与任务绩效密切相关, 但对于复杂界面中基于不同信息分配策略的多优先级刺激对作业人员的视觉注意力分配及任务绩效间的潜在联系仍亟待研究. 对此, 本文基于多优先级注意力分配策略实验对作业人员在不同负荷条件下的任务绩效和视觉行为的影响机制展开研究. 实验结果表明, 差异性的分配策略和信息优先级划分提升了任务绩效表现, 不同分配策略和优先级划分条件下的视觉行为存在显著差异, 并受脑力负荷的影响. 该结论能够为人机交互界面的设计和优化提供参考, 从而提高作业人员在任务中的绩效表现.
    2022,31(11):21-30, DOI: 10.15888/j.cnki.csa.008822
    [摘要] (167) [HTML] (64) [PDF 1.72 M] (281)
    摘要:
    利用传统的k匿名技术在社会网络中进行隐私保护时会存在聚类准则单一、图中数据信息利用不足等问题. 针对该问题, 提出了一种利用Kullback-Leibler (KL)散度衡量节点1-邻居图相似性的匿名技术(anonymization techniques for measuring the similarity of node 1-neighbor graph based on Kullback-Leibler divergence, SNKL). 根据节点1-邻居图分布的相似性对原始图节点集进行划分, 按照划分好的类进行图修改, 使修改后的图满足k匿名, 完成图的匿名发布. 实验结果表明, SNKL方法与HIGA方法相比在聚类系数上的改变量平均降低了17.3%, 同时生成的匿名图与原始图重要性节点重合度保持在95%以上. 所提方法在有效保证隐私的基础上, 可以显著的降低对原始图结构信息的改变.
    2022,31(11):31-48, DOI: 10.15888/j.cnki.csa.008811
    [摘要] (130) [HTML] (64) [PDF 1.78 M] (231)
    摘要:
    语音情感识别在人机交互过程中发挥极为重要的作用, 近年来备受关注. 目前, 大多数的语音情感识别方法主要在单一情感数据库上进行训练和测试 . 然而, 在实际应用中训练集和测试集可能来自不同的情感数据库. 由于这种不同情感数据库的分布存在巨大差异性, 导致大多数的语音情感识别方法取得的跨库识别性能不尽人意. 为此, 近年来不少研究者开始聚焦跨库语音情感识别方法的研究. 本文系统性综述了近年来跨库语音情感识别方法的研究现状与进展, 尤其对新发展起来的深度学习技术在跨库语音情感识别中的应用进行了重点分析与归纳. 首先, 介绍了语音情感识别中常用的情感数据库, 然后结合深度学习技术, 从监督、无监督和半监督学习角度出发, 总结和比较了现有基于手工特征和深度特征的跨库语音情感识别方法的研究进展情况, 最后对当前跨库语音情感识别领域存在的挑战和机遇进行了讨论与展望.
    2022,31(11):49-59, DOI: 10.15888/j.cnki.csa.008847
    [摘要] (157) [HTML] (120) [PDF 1.45 M] (246)
    摘要:
    空气污染是影响公共卫生的重要因素, 空气质量预测是空气污染预警的关键, 是近年来环境学、统计学、计算机科学等领域中的热点研究课题. 本文综述了空气质量预测方法的研究现状与进展, 尤其对近年来新发展起来的深度学习方法在空气质量预测方面的应用进行了系统分析与总结. 首先, 介绍了空气质量预测方法的演变历程和空气污染数据集. 然后, 阐述了传统空气质量预测方法. 随后, 从时间信息、时空信息、注意力机制等角度出发, 重点分析和比较了现有面向深度学习的空气质量预测方法的进展. 最后, 对空气质量预测方法的未来发展趋势进行了总结与展望.
    2022,31(11):60-67, DOI: 10.15888/j.cnki.csa.008783
    [摘要] (154) [HTML] (67) [PDF 1.37 M] (245)
    摘要:
    传统的基于Token的克隆检测方法利用代码字符串的序列化特性, 可以在大型代码仓中快速检测克隆. 但是与基于抽象语法树(AST)、程序依赖图(PDG)的方法相比, 由于缺少语法及语义信息, 针对文本有较大差异的克隆代码检测困难. 为此, 提出一种赋予语义信息的Token克隆检测方法. 首先, 分析抽象语法树, 使用AST路径抽象位于叶子节点的Token的语义信息; 然后, 在函数名和类型名角色的Token上建立低成本索引, 达到快速并有效地筛选候选克隆片段的目的. 最后, 使用赋予语义信息的Token判定代码块之间的相似性. 在公开的大规模数据集BigCloneBench实验结果表明, 该方法在文本相似度较低的Moderately Type-3和Weakly Type-3/Type-4类型克隆上显著优于主流方法, 包括NiCad、Deckard、CCAligner等, 同时在大型代码仓上需要更少的检测时间.
    快速检索
    过刊检索
    全选反选导出
    显示模式:
    优先出版日期:  2022-12-02 , DOI: 10.15888/j.cnki.csa.008932
    摘要:
    点积函数是BLAS库中的一级基础函数, 其被科学计算等领域广泛调用. 由于浮点计算会引入舍入误差, 现有BLAS库中双精度点积函数不足以满足某些应用领域的精度要求, 因此需要高精度算法来实现更精确可靠的计算. 在本文中, 面向国产申威1621平台, 在现有的BLAS库的基础上, 新增高精度点积函数的实现接口, 来满足应用的高精度需求. 同时, 对于高精度点积算法运用循环展开、访存优化、指令重排等优化策略, 实现汇编级手工优化. 实验结果显示, 文中高精度点积算法的计算结果精度, 近似达到了双精度点积的两倍, 有效提升了原始算法精度. 同时, 在保证精度提升的基础上, 文中优化后的高精度点积函数相比未优化前, 平均性能加速比达到了1.61.
    优先出版日期:  2022-12-02 , DOI: 10.15888/j.cnki.csa.008976
    摘要:
    旅行商问题作为组合优化研究中最具挑战的问题之一, 自被提出以来就引起了学术界的广泛关注并提出了大量的方法来解决它. 蚁群算法是求解复杂组合优化问题的一种启发式仿生进化算法, 是求解旅行商问题的有效手段. 本文分别介绍蚁群算法中几个有代表性的算法, 综述了蚁群算法的改进、融合和应用的文献研究进展, 以评价近年来不同版本的蚁群算法为解决旅行商问题的发展和研究成果, 并针对改进蚁群算法结构框架、算法参数的设置及优化、信息素优化和混合算法等方面, 对现被提出的改进算法进行了分类综述. 对蚁群算法在未来对旅行商问题及其他不同领域的研究内容和研究热点的进一步发展提供了展望和依据.
    优先出版日期:  2022-12-02 , DOI: 10.15888/j.cnki.csa.008985
    摘要:
    从有限自动机中生成简短、可读性强的正则表达式是计算机理论研究中的一个重大课题. 在经典的正则表达式生成算法中, 状态序列是影响正则表达式质量的关键因素. 为了能够快速高效的找到较优的状态序列, 本文以食肉植物算法的理论为核心, 并结合其它启发式算法的思想进行设计与优化, 提出了一种基于食肉植物算法的状态序列搜索方法. 通过实验将此方法与已有的一些使用启发式规则的搜索算法进行了对比, 实验结果表明, 基于食肉植物算法的状态序列搜索方法优于其他启发式算法, 生成的正则表达式长度比起其他启发式算法明显缩短, 如跟DM算法相比, 长度的缩短幅度可以随着自动机阶数的增加达到20%以上, 跟随机序列算法相比, 可以把长度缩短多个数量级.
    优先出版日期:  2022-12-02 , DOI: 10.15888/j.cnki.csa.008986
    摘要:
    近年来, 数字人文受到广泛关注, 数字人文环境下的词命名实体识别研究日渐兴起, 但鲜有研究从字特征的特征表示能力、分词的准确性、领域知识的有效性等方面进行探究. 鉴于此, 针对汉字的象形文字特点和词文本的特殊性, 在字特征的基础上, 引入部首特征、格律特征和声韵特征, 提出特征增强单元和特征抽取单元, 并将词牌知识三元组通过ANALOGY得到的知识向量表示为词牌知识向量, 通过双向长短时记忆网络、注意力机制等模型将部首向量、字向量、格律向量、声韵向量、词牌知识向量进行深度融合, 最终构建出融入多特征的词命名实体识别方法. 在《花间集全译》自制语料上的对比实验和消融实验的结果表明, 本文所提方法能够有效利用多特征提升词命名实体识别性能. 其F1值达到了85.63%, 完成了词命名实体识别任务.
    优先出版日期:  2022-12-02 , DOI: 10.15888/j.cnki.csa.009020
    摘要:
    相对于传统的物流仓库来说, 现在很多的自动化仓库不再使用工人去分拣货物, 而是使用自动引导车完成货物的分拣, 将“从人到货”的工作模式变为“从货到人”, 这种工作模式的转变, 不仅解放了工人的劳动力, 同时还实现了自动化仓库的机械化与自动化的结合, 大幅度地提升工作效率. 自动引导车在自动化仓库分拣货物的过程中一个重要的环节就是路径规划问题. 针对仓库中自动引导车的路径规划问题, 对传统的A*算法提出改进. 传统A*算法规划出来的路线具有路径过长、转折角度较大、路径不够平滑的缺陷. 针对以上缺陷, 提出动态加权以及改变搜索邻域的方法对传统A*算法进行改进, 因此减少了搜索节点, 提高了搜索速度. 同时多次使用高阶贝塞尔曲线对改进后的A*算法规划出来的路线进行平滑处理, 减少了转折点. 最后进行3组仿真实验对比, 证实本文提出的改进是有参考价值的.
    优先出版日期:  2022-12-02 , DOI: 10.15888/j.cnki.csa.008994
    摘要:
    自然灾害种类繁多, 通过遥感影像语义分割相对比较困难. 为了能够更好实现遥感影像分割, 本文提出一种基于生成对抗网络的3层遥感影像语义分割模型, 针对不同场景的解析, 基于全卷积神经网络FCN, 设计一种多层次的遥感语义分割框架. 有效对遥感图像语义分割进行处理, 从而提高了模型的分割精度. 实验表明利用这种模型是有效的, 特别是受损建筑的分割结果, mIoU为82.28%, 通过该模型与其他网络模型进行对比, 其性能评价指标明显优于其他网络模型. 最后, 通过对自然灾害各种场景影像进行分析, 为应急管理部门提供一份可靠的数据报告.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008996
    摘要:
    针对骑行者骑行姿势不规范的问题, 提出了一种用于规范骑行的参数化建模方法. 首先, 创建人体模型和自行车模型, 定义底层参数、中间层参数和高层参数, 实现模型参数化; 其次, 对骑行过程进行受力分析, 建立动力学模型, 保证虚拟骑行符合自然运动规律; 最后, 建立人体上下肢参数与自行车参数间约束关系, 实现人体关节协调运动. 对骑行过程进行运动仿真, 实验结果表明, 该方法能够为骑行者提供正确的姿势指导.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008992
    摘要:
    机制砂是由碎石或者砾石经制砂机反复破碎加工至粒径小于2.36 mm的人工砂. 在实验中把机制砂中的石粉含量和含泥量称为细粉含量, 细粉含量表征机制砂的洁净程度. 本文提出了一种基于XGBoost网络的机制砂细粉含量预测方法. 首先, 利用完全封闭的图像采集设备对机制砂细粉制成的溶液进行图像采集, 保证外界光线不会对图像拍照造成影响, 之后进行图片裁剪、读取RGB值、转LCH颜色空间等预处理, 然后构建XGBoost网络模型, 通过贝叶斯原理进行参数的循环迭代, 之后进行模型优化, 使模型的r2_score更高, 最终实现对机制砂细粉含量的预测. 结果表明: 该模型预测的数据的r2_score可以达到0.967 762, 相比于传统的多元线性回归模型、BP神经网络、传统XGBoost网络预测的r2_score0.896 1440.914 5980.950 670, 预测精度有明显提高. 在实际应用中, 该方法可以缩短机制砂细粉含量测量时间, 简化机制砂细粉含量测量步骤, 是一种新型的预测机制砂细粉含量的方法.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008993
    摘要:
    网络拓扑发现对于许多关键网络管理任务来说至关重要. 然而, 随着网络规模的不断增大, 网络结构的愈发复杂, 之前的基于SNMP的网络拓扑发现算法存在难以有效识别子网类型和多IP设备, 拓扑效率、准确率低等问题. 针对上述问题, 本文提出了基于SNMP的拓扑增强识别(SNMP-based topology enhanced identification, SNMP-TEI)算法. 首先, 启发式地确定子网IP地址并对其发送探针, 根据探测结果来判断子网类型, 在确定子网类型后及时终止探针注入防止网络负载过大; 其次通过MIB-II记录的系统信息设置设备指纹, 结合设备类型识别算法对终端主机IP进行设备指纹鉴定, 以达到识别多IP设备的目的. 实验结果表明, 此方法在仿真网络中可有效识别子网和多IP设备, 同时降低了网络负载, 探测准确率达到了96.43%.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008980
    摘要:
    非侵入式负荷监测, 是智能用电和节能技术的重要一部分, 备受研究者关注. 由于近年来新发展起来的深度学习方法在各种任务所表现出来的优越性能, 目前已有一些代表性深度学习方法被成功用于非侵入式负荷监测中的负荷分解任务. 为了系统地总结深度学习方法在非侵入式负荷监测领域中的研究现状与进展, 拟对近年来面向深度学习的非侵入式负荷监测研究文献进行分析与归纳. 首先对非侵入式负荷监测的框架进行简要概述; 随后介绍了非侵入式负荷监测的特征提取方法和公开数据集, 并重点分析和归纳了非侵入式负荷监测中面向深度学习的负荷分解方法; 最后对该领域存在的一些挑战及机遇进行了展望, 并指出了其未来的研究方向.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008973
    摘要:
    协商是人们就某些议题进行交流寻求一致协议的过程. 而自动协商旨在通过协商智能体的使用降低协商成本、提高协商效率并且优化协商结果. 近年来深度强化学习技术开始被运用于自动协商领域并取得了良好的效果, 然而依然存在智能体训练时间较长、特定协商领域依赖、协商信息利用不充分等问题. 为此, 本文提出了一种基于TD3深度强化学习算法的协商策略, 通过预训练降低训练过程的探索成本, 通过优化状态和动作定义提高协商策略的鲁棒性从而适应不同的协商场景, 通过多头语义神经网络和对手偏好预测模块充分利用协商的交互信息. 实验结果表明, 该策略在不同协商环境下都可以很好地完成协商任务.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008974
    摘要:
    针对疫情常态化背景下, 传统体育项目受场地、器材等限制, 市场上相关产品价格昂贵、可扩展性不足等问题, 提出了一种基于实时视频感知的虚拟体育交互系统. 该系统设计视频数据采集模块和人体关节点提取模块, 结合OpenPose获取人体的关节点坐标, 实时捕捉人体手势以及肢体动作. 动作语义理解模块包括运动动作理解和绘图动作理解. 前者根据运动中肢体关节点的相对位置关系, 识别运动动作语义. 后者将手腕部关节点绘图动作轨迹生成为草图图像, 使用AlexNet进行识别分类, 解析为对应的绘制动作语义. 该模型在边缘端设备的分类准确率为98.83%. 采用基于Unity设计的草图游戏应用作为可视化交互界面, 实现在虚拟场景中的运动交互. 该系统使用实时视频感知交互方式实现居家运动健身, 无需其他的外部设备, 具有更强的参与度和趣味性.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008977
    摘要:
    为了提高边缘计算设备对植物叶片病害检测的识别速率, 本研究采用卷积神经网络搭建了植物叶片目标识别模型和植物叶片病害分类模型, 并且使用OpenCV将两个模型整合成植物叶片病害检测系统. 通过SSD (single shot multibox detector)算法对植物叶片的目标区域进行定位并裁剪, 再利用植物叶片病害分类模型对裁剪的植物叶片区域进行病害分类. 同时, 通过TensorRT加速推理对分类模型进行优化处理, 以及在同一台主机设备和Jetson Nano计算平台上, 对优化前后的模型进行了对比实验. 实验表明, 在同一主机设备上优化后的植物分类模型识别速率提升22倍. 同时, 优化后的分类模型使植物叶片病害检测系统识别速率提升7倍. 而将优化后的系统部署在Jetson Nano计算平台上, 对比优化前的植物叶片病害检测速率提升10倍, 实现了实时的植物叶片病害检测.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008978
    摘要:
    建筑信息模型 (building information modeling, BIM)技术作为建筑业实现信息化数字化转型的核心技术, 在铁路建设全生命周期中具有很高的研究价值. 在铁路通信机械室内、站场、区间设计中, 将铁路通信实体的空间位置、形状、大小、关系等空间形态描述数据化, 结合铁路通信设计规范、相关铁路BIM标准以及专业实际设计需求, 研究开发出铁路通信数字工程设计系统. 本系统以空间形态数据为支撑, 铁路工程实体结构分解标准为基础, 在三维环境下实现了铁路通信机械室内机柜设备的智能布设, 站场通信沟槽线缆的路径规划, 区间通信信息点位置的准确布置. 系统进一步基于数字工程模型和图论基本原理, 实现了从数字工程模型中获取逻辑关系并生成通信逻辑网图. 经实际工程验证, 系统对铁路通信数字工程设计效率和准确率都有较大提升, 从工程源头实现了铁路通信工程数字化成果交付和应用, 促进了铁路通信工程项目全过程技术升级和数字化模式革新.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008979
    摘要:
    针对岩心图像拼接效率低以及易出现鬼影现象的问题, 提出了一种基于最佳缝合线的拉普拉斯金字塔融合的岩心图像拼接方法. 首先将待拼接的两幅岩心图像进行灰度变换, 根据ORB算法计算并描述特征点; 其次使用改进的RANSAC (random sample consensus)算法对特征点进行提纯, 完成特征点匹配; 根据匹配的特征点计算图像间的配准关系, 最后根据最佳缝合线实现岩心图像的拉普拉斯金字塔融合, 完成拼接. 实验结果表明, 改进的RANSAC算法能在保证正确率的同时提升速度, 而且本文提出的图像融合方法避免了鬼影的产生, 在融合区域的PSNRSSIMDoEM客观评价指标上与另外两种图像融合算法相比都有所提升.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008879
    摘要:
    面向滑动窗口的连续离群点检测问题是数据流管理领域中的重要问题. 该问题在信用卡欺诈检测、网络入侵防御, 地质灾害预警等诸多领域发挥着重要作用. 现有算法大多需要利用范围查询判断对象之间的位置关系, 而范围查询的查询代价大, 无法满足实时性要求. 本文提出基于滑动窗口模型下的查询处理框架GBEH (grid-based excepted heap). 首先, 它以网格为基础构建索引GQBI (grid queue based index)管理数据流. 该索引一方面维护数据流之间的位置关系, 另一方面利用队列维护数据流的时序关系. 其次, GBEH提出离群点检测算法PBH (priority based heap). 该算法利用查询范围与网格单元格的相交面积计算该单元格中包含于查询范围对象数目的数学期望, 并以此为基础构建基于小顶堆执行范围查询, 从而有效降低范围查询代价, 实现高效检测. 理论分析和实验验证GBEH的高效性和稳定性.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008962
    摘要:
    目前深度学习在医学图像分析领域取得的良好表现大多取决于高质量带标注的数据集, 但是医学图像由于其专业性和复杂性, 数据集的标注工作往往需要耗费巨大的成本. 本文针对这一问题设计了一种基于深度主动学习的半自动标注系统, 该系统通过主动学习算法减少训练深度学习标注模型所需的标注样本数量, 训练完成后的标注模型可以用于剩余数据集的标注工作. 系统基于Web应用构建, 无需安装且能跨平台访问, 便于用户完成标注工作.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008963
    摘要:
    在信息抽取领域, 从非结构化文本中抽取实体关系是一项基础且重要的任务, 且面临实体重叠和模型误差累积等挑战. 本文以关系为导向, 提出一种改进的实体关系联合抽取方法. 该方法将实体关系抽取任务分为关系抽取与实体抽取两个子任务. 在关系抽取任务上采用自注意力机制关注词与词之间的重要程度从而模拟实体信息, 并使用平均池化来表征整个句子信息; 在实体抽取任务上结合关系信息使用条件随机场识别该关系下的实体对. 本模型不仅能够利用存在关系必定存在实体对的思想解决实体对重叠问题, 还能够在训练过程中利用数据集中已知的关系使实体抽取模块不依赖于关系抽取模块的结果来训练, 从而在训练阶段避免误差累积. 最后, 在WebNLG和NYT公开数据集上验证了该模型的有效性.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008951
    摘要:
    原始无损路面图像对分析路面损伤演化细节及制定下一步养护方案具有重要意义, 而实地采集中无法获取路面裂缝图像对应的初始状态. 为了获取其对应的无损路面图像, 本文提出了一种基于深度图像先验的无监督沥青路面裂缝图像修复算法, 可实现对单张路面图像中裂缝的高效语义级修复. 首先采用鲁棒主成分分析算法去除路面裂缝图像表面的竖状条纹噪声. 随后, 采用最大类间方差法及形态学处理得到裂缝区域的二进制掩码图像. 最后, 运用提出的深度图像先验修复算法对裂缝区域进行修复得到最终的无损路面图像. 在自采集路面裂缝图像数据集上对所提方法进行了评估. 实验结果表明, 所提方法能够有效实现路面裂缝图像语义级修复, 峰值信噪比和结构相似性较传统的方法有了明显提升, 平均达到了43.382 3 dB和0.983 4, 且兼具高速度.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008953
    摘要:
    如何测度各省工业绿色发展水平高低, 判断各省工业绿色创新能力差异, 本文从绿色投入要素和绿色产出效益视角构建集结综合属性值的工业绿色发展多指标评价体系; 并在云模型基础上提出了基于混合多维云模型的区间多属性测度方法. 该方法创新性地利用区间权重和云权重的相互转换, 在解决多指标权重不一的问题后, 再运用父云贴近度计算工业绿色发展水平, 云投影度测定工业绿色创新能力; 最后采用省际间的工业面板数据进行验证. 结果表明, 相较于一般的多指标综合评价法, 该测定方法的实证结果与实际情况更相符合, 说明了该方法既能对工业绿色发展水平的整体情况进行评价分析, 也能精确计算出各指标贡献度, 从而判断其是否具有工业绿色创新能力. 因此, 本研究可为各地区调整工业绿色发展水平测度指标、制定工业绿色发展规划提供实质性建议和理论决策依据.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008960
    摘要:
    程序自动修复技术是保证软件质量、提高开发效率的有效手段. 目前, 大多数自动修复工具使用测试用例作为补丁正确性验证的最终方法, 有限的测试用例难以对程序进行充分的测试, 因此自动修复工具生成的补丁集合包含大量的不正确补丁. 为了识别不正确补丁, 我们采用对比缺陷修复前后成功测试的执行路径以及生成测试用例的方法来识别修复补丁的有效性, 以解决自动修复工具精度低的问题. 我们的方法评估了来自6个经典的自动修复工具生成的132个补丁, 并成功地排除了80个不正确的补丁并且没有排除正确的补丁, 这表明我们的方法可以有效地排除不正确补丁, 并且提高自动修复工具的精度.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008961
    摘要:
    针对糖尿病视网膜病变(DR)图像, 提出了一种基于多任务学习的图像多分类分割方法. 首先, 通过Otsu阈值算法将大部分无病灶信息像素去除; 其次, 通过滑动窗口切割的方法将图像切分为若干小尺寸的图像, 以解决医学图像分辨率过大以及病灶在图像中占比较小的问题; 再次, 将不存在病灶的子图剔除, 以增大含病灶子图的比例; 最后, 利用UNet++多任务学习属性, 并且用转置卷积代替传统上采样, 进行多输出多病灶的图像分割. 通过在国际公开的IDRID和DDR数据集上进行验证, 在IDRiD上取得0.7131的mAUPR, 在DDR上取得0.5691的mAUPR.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008918
    摘要:
    针对目前数据加密算法缺乏隐蔽性的缺点, 提出了一种结合P张量积压缩感知(P-tensor product compressive sensing, PTP-CS)模型和新分段混沌映射(segmented chaotic map, SCM)的视觉安全图像加密算法. 首先, 根据“拉伸和挤压”机制设计出一新的具有分式结构的分段混沌映射, 用以构建受控测量矩阵. 其次, 在测量矩阵和密码流的共同控制下, 明文的小波包系数矩阵经过二维阿诺德置乱、线性测量以及双向异或扩散生成视觉上无语义的中间秘密图像. 然后, 再采用数字隐写编码方法将其随机地嵌入到某一非涉密传输介质中以同步实现对敏感明文数据的内容和视觉的双重保护. 最后, 一系列的仿真实验和安全性分析表明所提加密算法能够抵御多种常见的攻击, 且具有很好的视觉安全性和压缩性能.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008881
    摘要:
    导光板(LGP)是液晶显示器(LCD)背光模组的主要部件. 导光板的缺陷将直接影响液晶显示器的显示效果. 针对导光板图像纹理背景复杂、低对比度、缺陷尺寸小等问题, 本文提出了一种用于大尺寸导光板缺陷检测的AYOLOv5s网络. 首先, 将导光板图像进行分图处理, 然后在主干部分和特征融合部分集成Transformer和注意力机制coordinate attention, 并选择Meta-ACON激活函数. 最后, 基于自建数据集LGPDD进行了大量实验. 实验结果表明, LGP缺陷检测算法的平均精度(mAP)可以达到99.20%, 并且FPS可达77, 可以实现在12 s/pcs内对尺寸为17英寸的导光板中的亮点、划伤、异物、磕碰伤、脏污等缺陷具有较好的实际检测效果.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008892
    摘要:
    针对背景复杂、遮挡、人群分布不均等人群计数常见问题, 提出了一种结合联合损失的空间-通道双注意力机制卷积神经网络模型(joint loss-based space-channel dual attention network, JL-SCDANet). 该网络前端进行图像粗粒度特征提取, 中间加入空间注意力机制以及通道注意力机制突出图像重点区域, 后端使用可加大感受野且不丢失图像分辨率的空洞卷积提取深层二维特征. 此外, 该模型结合联合损失函数进行训练, 以增强模型的鲁棒性. 为了验证模型的改进效果, 在3个公共数据集(ShanghaiTech Part B、mall和UCF_CC_50)上分别进行了对比实验, 在ShanghaiTech Part B数据集中平均绝对误差(MAE)和均方误差(MSE)分别达到了8.13和13.13; 在mall数据集中MAEMSE达到了1.78和2.28; 在UCF_CC_50数据集中MAEMSE分别达到了182.12和210.24, 实验结果证明了该网络在提高人数统计准确率上的有效性.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008858
    摘要:
    针对传统Seq2Seq序列模型在文本摘要任务中无法准确地提取到文本中的关键信息、无法处理单词表之外的单词等问题, 本文提出一种基于Fastformer的指针生成网络(pointer generator network, PGN)模型, 且该模型结合了抽取式和生成式两种文本摘要方法. 模型首先利用Fastformer模型高效的获取具有上下文信息的单词嵌入向量, 然后利用指针生成网络模型选择从源文本中复制单词或利用词汇表来生成新的摘要信息, 以解决文本摘要任务中常出现的OOV (out of vocabulary)问题, 同时模型使用覆盖机制来追踪过去时间步的注意力分布, 动态的调整单词的重要性, 解决了重复词问题, 最后, 在解码阶段引入了Beam Search优化算法, 使得解码器能够获得更加准确的摘要结果. 实验在百度AI Studio中汽车大师所提供的汽车诊断对话数据集中进行, 结果表明本文提出的Fastformer-PGN模型在中文文本摘要任务中达到的效果要优于基准模型, 具有更好的效果.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008743
    摘要:
    随着三维视觉的快速发展, 基于深度学习的大规模三维点云实时处理成为研究热点. 以三维空间分布无序的大规模三维点云为背景, 综合分析介绍并对比深度学习实时处理三维视觉问题的最新进展, 对点云分割、形状分类、目标检测等方面算法优势与不足进行详细分析, 给出详细的性能分析与优劣对比, 并对点云常用数据集进行简要介绍, 并给出不同数据集的算法性能对比. 最后, 指出未来在基于深度学习方法处理三维点云问题上的研究方向.
    优先出版日期:  2022-11-04 , DOI: 10.15888/j.cnki.csa.008946
    摘要:
    YOLO是目前计算机视觉目标检测领域比较重要的算法模型之一. 基于现有YOLOv5s模型提出了一种扩展的YOLOv5多级分类目标检测算法模型. 首先, 对LabelImg标注工具进行功能扩展, 使其满足多级分类标签文件构建; 其次在YOLOv5s算法基础上修改检测头输出格式, 在骨干网络前端引入DenseBlock、Res2Net网络模型核心设计思想, 获取丰富的多维度特征信息, 增强特征信息的重用性, 实现了YOLO多级分类目标检测任务. 在开源安全帽数据集上同时以安全帽颜色作为二级分类进行训练验证, 平均精度, 精确率和召回率分别达到了95.81%、94.90%和92.54%, 实验结果验证了YOLOv5多级分类目标检测任务的可行性, 并为目标检测及多级分类目标检测任务提供一种新的思路和方法.
    优先出版日期:  2022-11-04 , DOI: 10.15888/j.cnki.csa.008947
    摘要:
    雾天退化图像的复原过程中, 针对大气光幕和大气亮度估计不准确导致光晕效应、偏色现象和对比度不足等问题, 提出一种结合WLS (weighted least square)滤波与还原控制因子的去雾算法. 首先分析WLS滤波器的原理和性能, 并用于大气光幕的有效提取; 其次利用Sobel算子检测二值化图像边缘, 将边缘数目与像素均值同时作为四叉树空间索引的依据, 提高大气亮度的估计准确性; 最后分析天空出现颜色失衡现象的原因, 引入还原控制因子改善视觉效果. 实验结果表明, 去雾后图像的平均梯度整体提高58.03%, 信息熵提高2.88%, 运行时间节省50%以上. 该方法对含有浓雾、薄雾以及天空等深度复杂的远景图像、近景图像均能得到高对比度、可视度和色彩保真度的恢复效果.
    优先出版日期:  2022-11-04 , DOI: 10.15888/j.cnki.csa.008948
    摘要:
    针对基于深度学习的海上船舶目标检测任务中存在检测网络复杂且参数量大、检测实时性差的问题, 提出一种加强特征融合的轻量化YOLOv4算法——MA-YOLOv4. 首先使用MobileNetv3替换主干网络, 引入新的激活函数SiLU并使用深度可分离卷积代替普通3×3卷积降低网络参数量; 其次加入自适应空间特征融合模块加强特征融合; 最后使用MDK-means聚类算法得到适用于船舶目标的锚框, 用Ship7000数据集进行训练和评估. 实验结果表明, 改进算法与YOLOv4相比, 模型参数量降低82%, mAP提高2.57%, FPS提高30帧/s, 能实现对海上船舶的高精度实时检测.
    优先出版日期:  2022-11-04 , DOI: 10.15888/j.cnki.csa.008938
    摘要:
    区块链技术给加密货币带来了新的变化, 并得到了广泛的应用. 然而, 它仍面临着高吞吐量、低交易延迟、安全性和去中心化的需求和目标. 此外, 消费节点(交易提供者)的意愿难以映射到leader中, 区块开采者热衷于挖矿竞赛也导致中心化和能耗的加剧. 为此, 提出了一种不同于传统PoW (proof-of-work)共识的新型共识算法——PoM (proof-of-market), 及其第一个实施案例——Achain协议. PoM的算法设计使得消费节点进行PoW工作, 并投票选出leader节点. 这不仅离散化了挖矿的工作, 提升了去中心化, 降低了能耗, 还体现了消费节点的意愿, 只有受到最多支持的节点才能成为leader. 在性能上, 相较于PoW型区块链, Achain还提升了可扩展性, 此外, 还提供了一种Achain节点存储优化方案——FastAchain; 在安全性方面, Achain辅以一套激励相容的奖惩机制使得恶意节点的收益期望为负, 这保护了诚实节点的利益, 且Achain可以容忍至多1/3的全网总算力被恶意节点控制. 为了验证Achain的性能表现, 实施了一个大规模网络下的Achain原型用来评估其相关性能, 结果表明Achain达到了预期, 优于一些主流的代表性区块链协议, 且保持了良好的链收敛性和去中心化.
    优先出版日期:  2022-11-04 , DOI: 10.15888/j.cnki.csa.008931
    摘要:
    在计算机视觉的内窥胃部息肉检测中, 高效提取小型息肉图像特征是设计深度学习的计算机视觉模型一个难点. 针对该问题, 提出了一种YOLOv4改进的YOLOv4-polyp检测模型. 首先在YOLOv4的基础上, 引入CBAM卷积注意力模块增强模型在复杂环境的特征提取能力; 其次设计出轻量级CSPDarknet-49网络模型, 在降低模型复杂度的同时提高检测精度和检测速度; 最后根据胃息肉数据集的特点, 采用K-means++聚类算法对胃息肉数据集进行聚类分析, 得到优化后的锚框. 实验对比结果表明, YOLOv4-polyp对于经典YOLOv4模型在保持检测速率不变的同时, 在两个数据集中平均检测精度分别提升了5.21%和2.05%, 表现出良好的检测性能.
    优先出版日期:  2022-11-04 , DOI: 10.15888/j.cnki.csa.008965
    摘要:
    鱼类的探索与保护是保持海洋生态环境平衡的重要一环, 然而水下环境复杂, 受光照、水质以及遮挡物的影响, 造成水下捕捉鱼类图像成像模糊识别困难, 制约水下鱼类目标的检测速度以及检测精度. 针对以上问题, 提出了一种基于改进FCOS的海洋鱼类识别模型. 首先, 该模型以一阶段算法FCOS为基本架构, 使用轻量级的MobileNetv2作为骨干网络, 既保证检测准确度, 还可以提高检测; 其次, 引入自适应空间特征融合(adaptively spatial feature fusion, ASFF)模块, 避免尺度特征的不一致性, 提高检测精度; 最后, 将center-ness分支引入到回归分支中, 引入联合交并比损失(GIoU loss, generalized intersection over union)提高检测的性能. 实验数据集使用公开数据集Fish4Knowledge (F4K)中的图片以及视频帧截取图片, 选取训练性能最优模型进行评估. 结果表明, 提出的新模型在以上数据集的平均检测精度分别为99.79%、99.88%, 相较于原模型以及其他检测模型本文提出模型的检测精度与识别速度更高, 可为海洋鱼类识别提供参考依据.
    优先出版日期:  2022-11-04 , DOI: 10.15888/j.cnki.csa.008966
    摘要:
    以高速公路的无人机影像点云数据为研究对象, 提出一种基于双判定因子的道路绿化带分割算法. 首先对点云数据进行串行下采样, 在降低点云数目的同时尽可能多地保留点云特征点; 其次, 对降采样后的点云数据进行正射影校正; 最后, 提出一种结合法向量夹角与 RANSAC 平面分割双判定的点云分割算法, 实现了对高速公路中绿化带的准确分割, 采用绿化带边界提取算法最终实现高速公路环境信息的分割. 以G85高速凤翔段的无人机影像点云作为实验数据, 分别采用本文算法、基于法向量夹角的分割算法、基于RANSAC平面拟合分割算法进行验证. 实验结果表明基于双判定因子的道路绿化带分割算法对环境噪点及离群点有较好的抗干扰性, 可以有效过滤路面高曲率点, 提取结果较好.
    优先出版日期:  2022-11-04 , DOI: 10.15888/j.cnki.csa.008969
    摘要:
    为了提高分布式存储系统中故障节点的修复效率, 提出一种新的部分重复(fractional repetition, FR)码的构造算法. 该算法利用完全图的因子分解进行构造, 称为CGFBFR (complete graph factorization based FR)码. 该算法首先对完全图进行因子分解, 分解完成以后确定完全图的因子分解个数, 根据需要存储数据块的重复度来选择完全图的因子个数, 将完全图选中的因子所有顶点当做分布式存储系统中需要存储的数据块, 然后对选中因子图的边进行标记, 标记的边当做分布式数据节点进行存储. 最后根据选中的因子的顶点和边生成编码矩阵, 在分布式存储系统中按照编码矩阵中的数据对数据块分别进行存储. 实验仿真结果显示, 本文提出的一种新的部分重复码构造算法, 与分布式存储系统中的里所(reed-solomon, RS)码、简单再生码(simple regenerating codes, SRC)以及最新的循环可变部分重复(variable fractional repetition, VFR)码相比, 在系统修复故障节点时, 能够快速的修复故障节点, 有效降低了故障节点的修复带宽开销、修复局部性、修复复杂度, 而且构造过程简单, 同时可以灵活选择构造参数, 广泛适用于分布式存储系统中.
    优先出版日期:  2022-11-04 , DOI: 10.15888/j.cnki.csa.008930
    摘要:
    随着加密技术的全面应用, 越来越多的恶意软件同样采用加密的方式隐藏自身的网络活动, 导致基于规则和特征的传统方法无法满足准确性和普适性的要求. 针对上述问题, 提出一种层次特征融合和注意力的恶意加密流量识别方法. 算法具备层次结构, 依次提取数据包的特征和会话流的特征, 前一阶段设计全局混合池化方法进行特征融合; 后一阶段使用注意力机制提高BiLSTM网络分析序列关系的能力. 最终, 实验采用CIC-AndMal 2017数据集进行验证, 结果表明: 模型设计合理, 相比TextCNN模型和HST-MHSA模型, 漏报率分别降低5.8%和2.6%, 加权F1值分别提高4.7%和3.5%, 在恶意加密流量识别和分类方面体现良好的优化效果.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008939
    摘要:
    针对单幅图像超分辨率(single image super-resolution, SISR)重建算法存在低分辨率图像(LR)到高分辨率图像(HR)的映射学习具有不适定性, 深层神经网络收敛慢且缺乏对高频信息的学习能力以及在深层神经网络传播过程中图像特征信息存在丢失的问题. 本文提出了基于对偶回归和残差注意力机制的图像超分辨率重建网络. 首先, 通过对偶回归约束映射空间. 其次, 融合通道和空间注意力机制构造了残差注意力模块(RCSAB), 加快模型收敛速度的同时, 有效增强了对高频信息的学习. 最后, 融入密集特征融合模块, 增强了特征信息流动性. 在Set5、Set14、BSD100、Urban100 四种基准数据集上与目前主流的单幅图像超分辨率算法进行对比, 实验结果表明该方法无论是在客观质量评价指标还是主观视觉效果均优于对比算法.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008934
    摘要:
    随着车载GPS定位设备的普及, 产生了大量的车辆轨迹数据和位置信息, 各种轨迹挖掘技术也应运而生. 然而, 现有的轨迹挖掘技术较少考虑用户的隐私泄露问题, 因此, 本文提出了一种融合隐私保护的车辆轨迹数据停留点挖掘方法. 在该算法中, 首先通过密度聚类筛选出轨迹停留点, 其次结合差分隐私技术对停留点进行隐私保护. 通过实验验证, 该方法不仅能有效识别出停留点的位置, 还能保护其隐私不被泄露.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008959
    摘要:
    随着互联网金融和电子支付业务的高速增长, 由此引发的个人信用问题也呈现与日俱增的态势. 个人信用预测本质上是不平衡的序列二分类问题, 这类问题的数据样本规模大、维度高、数据分布极不平衡. 为了高效区分申请者的信用情况, 本文提出一种基于特征优化和集成学习的个人信用预测方法(PL-SmoteBoost). 该方法在Boosting集成框架下构建个人信用预测模型, 首先利用Pearson相关系数对数据进行初始化分析, 剔除冗余数据; 通过Lasso选取部分特征来减少数据维度, 降低高维风险; 通过SMOTE过采样方法对降维数据的少数类进行线性插值, 以解决类不平衡问题; 最后为了验证算法有效性, 以常用的处理二分类问题的算法作为对比方法, 采用从Kaggle和微软开放数据库下载的高纬度不平衡数据集对算法进行测试, 以AUC作为算法的评价指标, 利用统计检验手段对实验结果进行分析. 结果表明, 相对于其他算法, 本文提出的PL-SmoteBoost算法具有显著优势.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008954
    摘要:
    针对传统航拍视频图像CNN模型天气分类效果差、无法满足移动设备应用以及现有天气图像数据集匮乏且场景单一的问题, 构建了晴天、雨天、雪天、雾天4类面向多场景的无人机航拍天气图像数据集, 并提出了基于轻量级迁移学习的无人机航拍视频图像天气场景分类模型. 该模型采用迁移学习的方法, 在ImageNet数据集上训练好两种轻量级CNN, 并设计3个轻量级CNN分支进行特征提取. 特征提取首先采用ECANet注意力机制改进的EfficientNet-b0作为主分支提取整幅图像特征, 并使用两个MobileNetv2分支分别对天空和非天空局部独有的深层特征进行提取. 其次, 通过Concatenate将这3个区域进行特征融合. 最后, 使用Softmax层对4类天气场景实现分类. 实验结果表明, 该方法应用于移动等计算受限设备时对于天气场景分类的识别准确率达到了97.3%, 有着较好的分类效果.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008919
    摘要:
    准确预测商业销售量未来趋势对于企业开发经营、政府宏观调控等至关重要. 传统的数据预测方法计算时间开销大, 具有主观性, 而现有基于数据驱动的未来商业预测方法没有考虑到数据集中的特征多样. 商业销售量数据是一个时序数据, 时序数据中包含了丰富的时间窗特征、滞后历史特征和价格变化趋势特征等众多特征, 先前的研究往往只注重于其中的某些特征, 对于特征的融合和增强探究偏少, 现有的未来商业预测方法的预测精度仍然有待提高. 为此, 本文提出了一种基于多模式特征聚合的未来商业预测方法, 该方法首先将商业销售量数据进行预处理; 然后基于特征工程提取数据集的5组不同的时间窗特征和其他特征; 在机器学习上对于5组时间窗特征采用硬投票机制选择合适的模型训练, 同时也采用神经网络的优化模型提取时序特征和预测结果, 然后分析销售量数据集和某些特征之间的依赖关系; 最后基于软投票模型完整地模型融合实现了商业销售量的高精度预测. 一系列实验结果表明, 本文提出的方法具有较高预测精度和效率, 明显优于现有预测方法.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008940
    摘要:
    在全媒体时代下, 基于多模态数据的推荐具有重要意义. 本文使用文本、音频、图像3种模态数据进行推荐, 通过两个阶段进行张量融合: 第1阶段通过3个平行分支对任意两个模式的相关性进行建模和融合, 第2阶段再将3个分支的结果进行融合, 不仅考虑了两模态之间的局部交互作用, 并且消除了模态融合顺序对结果的影响; 在推荐模块中, 将融合特征通过堆叠降噪自编码器作为协同过滤的辅助特征进行推荐. 本文所构建的推荐系统中模态融合与推荐采用端到端的训练过程. 同时, 为了解决推荐结果中存在的相似度高、多样性差的问题, 我们基于二阶段的张量模态融合特征构建相似度矩阵, 在已有推荐结果的基础上进一步精化结果, 实现快速的多样性推荐. 实验证明, 基于本文提出的多模态融合特征的推荐模型不仅能够有效地提升推荐性能, 并且能够增强推荐结果的多样性.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008941
    摘要:
    针对具有约束性的复合分位数回归网络(monotone composite quantile regression neural network, MCQRNN)无法较好地分析负荷数据之中的时序信息和内在规律的问题, 本研究融合MCQRNN以及膨胀因果卷积网络(dilated causal convolutional networks, DCC), 提出了一种新的分位数回归模型MCQRDCC (monotone composite quantile regression dilated causal convolutional networks), 该模型将输入划分为分位点输入与非约束输入, 使该模型的输出随分位点的增大而增大, 以此解决分位数交叉的问题. 同时, 使用DCC的结构, 使该模型充分地分析负荷数据之中的序列信息, 使得预测结果更加符合真实负荷的变化趋势. 此外, MCQRNN使用指数函数对约束权重矩阵和隐藏层权重进行转化, 会影响反向传播时权重的调整, 本研究使用ReLU函数代替指数函数可以解决这个问题, 以此提高预测的精度. 使用真实的负荷数据进行实验, 实验结果表明, MCQRDCC能有效地提高预测精度, 相较于MCQRNN, 其平均Pinball损失和CWC分别下降2.11%和9.31%, AIS提升了10.51%.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008942
    摘要:
    保持安全社交距离是有效防止病毒传播的重要手段之一, 不仅可以减少感染者数量和医疗负担, 同时也极大降低死亡率. 在YOLOv4框架基础上使用轻量化网络E-GhostNet代替原网络中的CSPDarknet-53, E-GhostNet网络在输入数据和原始Ghost模块生成的输出特征之间建立关系, 使网络能够捕获上下文特征. 然后, 在E-GhostNet中引入坐标注意力机制(CA)增强模型对有效特征的关注. 另外, 使用SIoU损失函数更换CIoU损失获得更快的收敛速度和优化效果. 最后, 结合DeepSORT多目标跟踪算法来检测和标记行人, 并使用仿射变换(IPM)判定行人间距离的违规行为. 实验结果显示, 该网络检测速度为40 FPS, 精度值达到85.71%, 相比原始GhostNet算法提升2.57%, 达到实时行人距离检测的效果.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008944
    摘要:
    道路裂缝是路面破损的重要组成部分, 而道路裂缝分类可以对道路养护策略的制定进行针对性的安排. 针对人工标注分类耗时长, 效率低等问题, 本文提出了一个基于对比学习的道路裂缝图像分类方法, 在传统的对比学习框架中, 对特征提取部分进行改进, 使得模型对细小裂缝的特征更敏感. 首先对进行数据增强, 其次在特征提取部分对ResNet50的部分进行改进, 使用多尺度的方法提取特征; 再使用多层感知机(MLP)对提取到的特征进行降维处理, 并投影到向量空间; 最后使用余弦相似度与用归一化温度标度的交叉熵损失对模型进行优化. 实验结果表明, 改进后的模型比原模型在裂缝图像上的分类效果提高了0.22%, 达到了92.1%, 对裂缝图像分类有较好的效果.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008955
    摘要:
    为研究计算机病毒传播对网络系统安全态势的影响, 分析了SIR流行病传播模型与计算机网络安全之间的联系, 提出了一种用于网络安全态势预测的SIPM模型. SIPM模型中加入了节点对不同病毒传播的记忆功能, 支持多种病毒同时在网络中独立进行传播, 并在SIR模型基础上改进了动力学传播方程, 允许单独设置病毒对不同设备节点的感染能力和设备节点对不同病毒的抵御能力, 进而更加贴近真实网络环境. 实验分析使用了典型校园网络架构进行模拟仿真, 结果表明该模型可以从多个方面进行网络安全态势的分析与预测.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008956
    摘要:
    网络攻击的手段层出不穷, 如中间人攻击, 重放攻击, DoS攻击等, 以此获取不当利益. 密钥协商协议的设立是为合法用户提供正确认证入口, 并拒绝攻击者的非法接入和攻击. 密钥协商协议是保护移动通信提高服务质量的第一道安全防线, 5G网络密钥协商协议在实际环境中仍然存在安全隐患, 其协议本身的安全特性能否满足要求仍未可知, 本文提出使用基于概率模型检测的方法, 通过对5G网络密钥协商协议的各协议方实体进行建模, 建立离散时间马尔科夫链模型, 在建模过程中考虑外界的攻击影响, 引入攻击率来描述外界的影响程度, 通过攻击率对5G网络密钥协商协议的研究进行定量分析, 使用概率计算树逻辑对待验属性规约进行编码描述, 利用概率模型检测工具PRISM进行实验. 实验结果表明: 在引入攻击率的5G网络密钥协商协议模型中, 5G网络密钥协商协议各协议方实体所受攻击的影响对该协议的时延性, 有效性, 保密性等属性规约的性能有不同程度的影响, 因此, 研究外界网络攻击对协议的安全性能的影响, 对加强协议安全性能及其改进具有一定借鉴意义, 并对5G网络密钥协商协议的安全特性的提升和保护用户的经济与信息安全具有很大的意义.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008957
    摘要:
    针对雾霾环境下车辆检测准确率低、漏检严重的问题, 提出一种多尺度特征融合的雾霾环境下车辆检测算法. 首先利用条件生成对抗网络对雾霾图像进行去雾预处理, 然后针对雾霾环境下目标特征不明显的特点, 提出多尺度特征融合模块, 在YOLOv3的基础上, 从主干网络提取特征时增加一条浅层分支和深层特征进行上采样拼接融合, 得到尺度为104×104的特征图, 用于增强浅层的语义信息. 并采用CBAM注意力机制引导下的特征增强策略, 保证上下文信息的完整性, 以提高检测的精度, 最后将去雾后图片送入改进后的YOLOv3网络进行检测. 实验结果表明, 相较于原始网络, 该算法在RTTS数据集上的检测结果更加优秀, 模型可以达到81%的平均精度和67.52%的召回率, 能够更加精确的定位到车辆.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008958
    摘要:
    针对航空发动机剩余可用寿命(RUL)预测任务中代表性特征提取不充分导致RUL预测精度较低等问题, 提出了一种基于多特征融合的航空发动机RUL预测方法. 利用指数平滑法(ES)降低原始数据中的噪声干扰, 得到相对平稳的特征数据. 使用双向长短期记忆网络(Bi-LSTM)提取特征数据的时序特征, 利用多头注意力机制(Multi-Attention)为时序特征赋予权重; 设计卷积长短期记忆网络(Conv-LSTM)提取特征数据的时空特征; 提取特征数据的手工特征并使用Softmax函数计算权重. 设计一个特征融合框架将上述特征进行融合, 然后通过全连接网络回归实现最终RUL预测. 使用C-MAPSS数据集对模型进行仿真验证, 与Bi-LSTM等模型进行对比, 模型RUL预测精度更高, 适应性更好.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008908
    摘要:
    人体血细胞的检测与分割可以辅助医生快速对人体当前健康情况做出简单判断, 对诊断疾病具有重要意义. 为了解决传统图像分割算法在血细胞分割任务中出现错误分割目标、无法完全分割目标等问题, 提出了一种融合Xception特征提取和坐标注意力机制的血细胞分割算法XCA-Unet++. 该算法在Unet++网络结构的基础上, 在编码器部分引入Xception特征提取网络以更好地提取低层特征信息. 设计了一种以坐标注意力机制为基础的注意力细胞检测模块, 增强了网络对血细胞模糊边缘和不完整细胞的特征提取能力. 采用DiceLoss作为损失函数以优化数据集正负样本不均衡问题和提高网络的收敛能力. 在公开血细胞数据集上的实验对比表明, XCA-Unet++网络在IoUAccF1评估指标下分别取得94.44%、96.78%和97.12%的结果, 分割性能优于其他分割网络, 满足血细胞分割任务的精度要求.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008769
    摘要:
    正确识别语音中包含的情感信息可以大幅提高人机交互的效率. 目前, 语音情感识别系统主要由语音特征抽取和语音特征分类两步组成. 为了提高语音情感识别准确率, 选用语谱图而非传统声学特征作为模型输入, 采用基于attention机制的CGRU网络提取语谱图中包含的频域信息和时域信息. 实验结果表明: 在模型中引入注意力机制有利于减少冗余信息的干扰, 并且相较于基于LSTM网络的模型, 采用GRU网络的模型预测精确度更高, 且在训练时收敛更快, 与基于LSTM的基线模型相比, 基于GRU网络的模型训练时长只有前者的60%.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008848
    摘要:
    近几十年来, 计算机硬件性能和软件规模技术已不同以往, 其承载了人类社会生活生产的方方面面. 计算机技术的飞速发展, 也带来了人们对程序安全问题的关注. 由于市面上存在着较多的遗留软件, 这些软件无人维护且缺乏源代码支持, 其安全性令人担忧, 而二进制分析技术被用来解决该类软件问题. 二进制分析技术根据其检测方式不同可分为: 基于静态的二进制代码分析技术、基于动态的二进制代码分析技术和动静态混合的二进制代码分析技术. 本文调研了近年来的二进制代码安全分析领域上相关研究, 分别详细阐述了这3类技术中的主要方法, 并对其关键技术进行详细介绍.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008849
    摘要:
    哈希表在网络报文处理, 尤其是带状态的报文处理中发挥着重要作用. 伴随着网络流量的快速增长, 传统软件哈希表难以满足网络性能需求, 而查找是影响哈希表性能的关键之一, 如何提升哈希表的查找速率也一直是一个难点问题. 经研究表明, 现有的网络流量呈现Pareto分布特征, 即存在少数的大流量数据——大象流. 基于当前数据中心广泛采用的软硬协同计算模式, 提出了一种基于DPDK+FPGA的大规模软硬协同哈希表架构. 根据现有网络流量特征, 将流量分成大象流与背景流. 同时也将哈希表分成硬件表与软件表. 在FPGA中构造小规模硬件表, 卸载所有报文的哈希计算, 以及大象流的哈希查找. 在软件中基于DPDK构建大规模软件表, 利用FPGA卸载哈希计算, 加速背景流的查找. 软件拥有所有流信息, 利用采样法识别大象流并将大象流的键值对信息(key-value)更新到FPGA的硬件表中, 以加速软件中大规模软件表的查找速率. 采用Xilinx U200加速卡和通用服务器作为硬件平台, 实现了软硬协同的大规模哈希表, 并利用测试仪构造了符合当前网络特征的流量数据, 以DPDK精确转发为例, 验证了软硬协同哈希表的性能. 结果表明, 在大象流哈希查找完全卸载的情况下, 其性能相较DPDK原有的精确转发提升了64%–75%; 在大象流未卸载的情况下, 其性能提升了5%–48%.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008896
    摘要:
    RISC-V是基于精简指令集原理建立的免费开放指令集架构, 具有完全开源、架构简单、易于移植、模块化设计等特点. 随着网络高速发展, 安全风险无处不在, 利用RISC-V的可扩展特性是一种非常有效地提升RISC-V设备安全的方式. 因此, 本文针对RISC-V自定义指令的安全能力, 结合可信计算、流密码技术, 设计了简单高效的RISC-V自定义指令, 实现基于可信基的数据安全存储功能, 并依托GNU编译工具链实现对自定义指令的编译支持, 在模拟器上测试应用程序对自定义指令的调用执行. 该指令充分结合可信计算与流密码的安全特性, 可实现较强的安全性.
    优先出版日期:  2022-09-26 , DOI: 10.15888/j.cnki.csa.008935
    摘要:
    为了有效改善传输速率并降低带宽负担, 提出一种基于压缩感知和超混沌系统的多图像加密方案. 首先将多幅原始图像拼接成新的明文图像, 并将部分明文信息与随机正整数结合产生混沌系统初始值, 利用超混沌系统产生的伪随机序列生成加密过程所需的测量矩阵、置乱序列及扩散序列. 其次通过离散小波变换、阈值处理以及并行测量对明文图像进行压缩处理, 有效减少运算数据量, 大大加快运行速率. 最后通过无重复置乱操作和双向加模扩散得到最终的密文图像. 经多个层面的仿真模拟实验, 验证了所提算法能有效抵御剪切攻击, 且具有比较高的安全性.
    优先出版日期:  2022-09-26 , DOI: 10.15888/j.cnki.csa.008929
    摘要:
    直流充电桩作为电动汽车有效的供电设备, 其故障频发对电动汽车充电安全带来隐患. 对充电桩的故障进行准确预测将有效地确保电动汽车充电过程的安全. 本文提出了一种改进门控循环单元(gate recurrent unit, GRU)直流充电桩的故障预测模型. 首先, 分析充电过程中直流充电桩的常见故障类型, 考虑到实际采集过程中具体故障数据样本量少的情况, 利用变分自编码器(variational auto-encoder, VAE)数据增强方法对样本数据进行扩充; 然后, 基于GRU网络模型的故障预测方法, 利用粒子群优化(particle swarm optimization, PSO)算法优化GRU网络参数, 采用支持向量机(support vector machine, SVM)模型改善网络输出的分类函数, 提出了PSO-GRU-SVM直流充电桩故障诊断模型; 最后, 利用算例对比改进前后的预测精度, 分析对比混淆矩阵热力图, 并且与常用的两种网络模型进行对比, 结果表明了文中方法有效的提高了预测精度, 验证了文章中方法的可行性.
    优先出版日期:  2022-09-26 , DOI: 10.15888/j.cnki.csa.008923
    摘要:
    在自动化港口集装箱起重机作业流程中, 集卡车头防砸检测是不可或缺的一个环节. 针对在此环节采用人工确认方法效率低和基于激光扫描方法耗费高、系统复杂的问题, 本文提出一种基于作业场景视频图像和深度学习的算法对集卡车头进行目标检测. 建立集卡车头样本数据集, 采用DCTH-YOLOv3检测模型, 通过模型迁移学习方法进行样本训练. DCTH-YOLOv3模型是本文提出的一种改进YOLOv3算法模型, 该算法改进了YOLOv3的FPN结构提出一种新的特征金字塔结构—AF_FPN, 在高、低阶特征融合时通过引入具有注意力机制的AFF模块聚焦有效特征、抑制干扰噪声, 提高了检测精度. 另外, 使用CIoU loss度量损失替代L2损失, 提供更加准确的边界框变化信息, 模型检测精度得到进一步提升. 实验结果表明: DCTH-YOLOv3算法在GTX1080TI上检测速率可达46 fps, 相比YOLOv3算法仅降低了3 fps; 检测精度AP0.50.9974、AP0.90.4897, 其中AP0.9相比YOLOv3算法提升了16.4%. 本研究算法相比YOLOv3算法, 精度更高, 更能满足自动化作业对集卡防砸检测高精度、快识别的要求.
    优先出版日期:  2022-09-23 , DOI: 10.15888/j.cnki.csa.008925
    摘要:
    区块链作为一种创新型的分布式账本技术, 以其去中心化、可追溯、防篡改等特性, 在未来许多行业中具有广泛的应用前景. 但现有单链式结构的区块链存在并发低、高延迟等问题. 一种基于有向无环图(directed acyclic graph, DAG)结构的新型账本技术的出现有望突破传统区块链的性能瓶颈, 但目前基于DAG型区块链系统的共识机制并不成熟. 本文针对典型DAG型区块链系统Nano网络的ORV共识机制存在的安全性问题进行改进, 提出了一种基于代表选举模型的公开选举代表投票共识机制, 即OERV (open elect representative voting). 使主要代表节点的权益得到了分散, 增强了去中心化程度, 提高了网络安全性. 实验结果表明, OERV算法性能高效, 能够在不牺牲系统效率的同时增强系统的稳定性和安全性, 对于推动DAG型区块链共识机制的研究有着重要的现实意义.
    优先出版日期:  2022-09-23 , DOI: 10.15888/j.cnki.csa.008926
    摘要:
    番茄叶片病害种类具有差异较小、肉眼难以辨别的特点. 针对经典卷积神经网络参数多、计算量巨大、模型识别率较低以及预测误差较大等问题, 提出一种改进MobileNetV2网络的病害识别方法. 在适当的网络层加入通道和空间注意力机制增强网络对于病叶片特征的细化能力以及减少无关特征的干扰, 使用Ghost模块替换原模型中部分倒残差块, 保证模型精度的同时减少参数量. 利用LeakyReLU激活函数保留特征图中更多的正负特征信息, 增强模型的鲁棒性. 在公共数据集PlantVillage选取早疫病, 晚疫病, 班枯病, 细菌性溃疡病, 红斑叶螨病, 叶霉病, 细菌性斑点病等10种番茄病叶片作为数据集进行实验. 实验结果表明, 改进MobileNetV2网络分类准确率达到98.57%, 相较于原MobileNetV2, 准确率提高了2.29%, 模型大小减小了22.52%, 优化效果较为显著.
    优先出版日期:  2022-09-23 , DOI: 10.15888/j.cnki.csa.008928
    摘要:
    对于卫星视频图像中存在的目标与背景对比性低、缺乏目标特征信息等问题, 提出一种结合目标运动信息、时空背景和外观模型的目标分割和跟踪方法. 根据首帧定位得到目标区域, 首先对目标使用方向梯度直方图方法提取特征利用核相关滤波器得到目标跟踪区域1; 接着利用颜色空间特征建立目标与其周围区域上下文信息的空间模型得到目标跟踪区域2; 然后利用视觉背景提取算法以像素为单位在目标区域上检测运动目标得到单目标的分割区域3; 最后分别对3个区域进行相关计算得到最优区域作为最终目标跟踪位置和模板更新样本. 实验结果表明, 本文算法与KCF算法相比, 跟踪的成功率和准确率有很大的提高, 同时实现了单目标分割.
    优先出版日期:  2022-09-23 , DOI: 10.15888/j.cnki.csa.008917
    摘要:
    随着电动汽车保有量不断上升, 其相关配套设施也面临巨大挑战, 不合理的充电资源分配在充电高峰期会造成部分充电站过度拥挤, 并且影响电网稳定运行. 提出一种考虑多目标优化的调度模型, 通过分析充电站内不同充电选项的排队时间, 并根据排队率和分时电价提出一种动态定价模型, 影响车主充电行为, 结合动态定价模型与充电需求计算充电成本, 考虑基于起讫点的充电总路径行驶时间, 以总成本最少为优化目标, 基于DEB-ABC算法进行求解. 在某区域内对1 500辆电动汽车进行仿真验证, 结果表明提出的优化调度模型可减少充电等待时间、充电成本和总行驶时间, 提高区域内充电站利用率.
    优先出版日期:  2022-09-23 , DOI: 10.15888/j.cnki.csa.008914
    摘要:
    作为计算机视觉领域的基本问题之一, 目标追踪具有广泛的应用场景. 随着硬件算力和深度学习方法的进步, 常规的深度学习目标追踪方法精度越来越高, 但其模型参数量庞大, 计算资源和能耗需求高. 近年来, 随着无人机和智能物联网应用的蓬勃发展, 如何在存储空间和算力有限、低功耗需求的嵌入式硬件环境中进行实时目标跟踪, 成为了当前研究的热点. 本文对面向嵌入式应用的目标追踪方法进行了分析综述, 包括相关滤波结合深度学习的目标追踪方法、基于轻量神经网络的目标跟踪方法, 并总结了深度学习模型部署流程和无人机等领域的嵌入式目标追踪典型应用实例, 最后对未来研究重点进行了展望.
    优先出版日期:  2022-09-14 , DOI: 10.15888/j.cnki.csa.008912
    摘要:
    考虑到目前图像加密算法缺少了对加密后图像的视觉安全的保护, 将新余弦混沌映射和贝叶斯压缩感知进行结合提出一种视觉有意义的图像加密算法是非常有价值的. 首先, 基于余弦函数提出了一个新的一维混沌映射用于构建受控测量矩阵, 除此之外, 所提出的新余弦混沌映射能够更好的扰乱图像的强相关性. 其次, 通过二维Arnold置乱算法对明文图像的小波包系数矩阵进行置乱. 然后, 借助混沌测量矩阵和双向加模扩散策略对置乱后的秘密图像进行压缩和加密. 最后, 通过最低有效位嵌入算法将秘密图像嵌入到经过生命游戏混合置乱后的载体图像中以得到一幅具有视觉意义的密文图像. 仿真结果和安全性分析表明在保证视觉安全性和解密质量的前提下所提加密算法具备可行性和高效性.
    优先出版日期:  2022-09-14 , DOI: 10.15888/j.cnki.csa.008913
    摘要:
    随着互联网的发展, 如何快速地从海量新闻中获取核心信息, 减少浏览负担, 是信息部门目前急需解决的问题. 现有的TextRank及其改进算法在新闻摘要抽取任务中, 考虑文本特征不全面. 在摘要句选择时, 只考虑到摘要的冗余度, 忽略了摘要的多样性及可读性. 针对上述问题, 本文提出了融合多特征的文本自动摘要方法MF-TextRank(multi-feature TextRank). 根据新闻的结构、句子和单词总结了更全面的文本特征信息用于改进TextRank算法的权重转移矩阵, 使句子权重计算更准确. 采用MMR算法更新句子权重, 通过集束搜索得到候选摘要集, 在MMR得分的基础上选择内聚性最高的候选摘要集作为最终的摘要输出. 实验结果表明, MF-TextRank算法在摘要抽取任务中摘要Rouge得分优于现有改进的TexRank算法, 有效提高了摘要抽取的准确性.
    优先出版日期:  2022-09-14 , DOI: 10.15888/j.cnki.csa.008916
    摘要:
    在牦牛高效养殖过程中, 牦牛等级评定是牦牛育种工作中的重要环节. 为了在牦牛等级评定研究中, 降低数据集分布不平衡对牦牛等级预测结果的影响, 提出一种基于改进条件生成对抗网络模型的牦牛等级评定模型VAE-CGAN. 首先, 为获取高质量生成样本, 模型通过引入变分自编码器取代条件生成对抗网络输入中的随机噪声, 降低了随机变量带来的不确定性. 此外, 模型将牦牛标签作为条件信息输入到生成对抗模型中来获取指定类别的生成样本, 生成样本及训练样本则会被用于训练深度神经网络分类器. 实验结果显示, 模型整体预测准确率达到了97.9%. 而且与生成对抗网络相比较, 在数量较少的特级牦牛等级预测上的精准率、召回率和F1值分别提升了16.7%、16.6%和19.4%. 实验结果表明该模型可以实现高精准度和低误分类率的牦牛等级分类.
    优先出版日期:  2022-09-14 , DOI: 10.15888/j.cnki.csa.008784
    摘要:
    针对当前病人运送问题主要以燃油车为主展开研究, 本文围绕电动车运送病人问题建模, 并对燃油及电动车病人运送算例进行对比分析, 以验证电动车运送病人的可行性和优越性. 首先构建燃油车病人运送数学模型, 考虑了每位病人最长乘车时间、车辆最大平均行驶速度和病人时间窗等约束, 以燃油车的行驶消耗成本和加油成本之和最小化为目标. 其次构建电动车病人运送数学模型, 考虑了电车充电时间、剩余电量、电车最大平均行驶速度、每位病人最长乘车时间以及病人时间窗等约束, 以电动车行驶消耗成本和充电成本之和最小化为目标. 最后选取算例并利用LINGO软件进行编程求解, 验证数学模型的可行性和有效性.
    优先出版日期:  2022-09-14 , DOI: 10.15888/j.cnki.csa.008758
    摘要:
    在自动驾驶应用场景下, 将YOLOv5应用于目标检测中, 性能较之前版本有明显的提升, 但在高运行速度情况下检测精度仍不够高, 本文提出一种基于改进YOLOv5的车辆端目标检测方法. 为解决训练不同数据集时需手动设计初始锚框大小, 引入自适应锚框计算. 在主干网络(Backbone)添加压缩与激励模块(squeeze and excitation, SE), 筛选针对通道的特征信息, 提升特征表达能力. 为了提升检测不同大小物体时的精度, 将注意力机制与检测网络融合, 把卷积注意力模块 (convolutional block attention module, CBAM)与Neck部分融合, 使模型在检测不同大小的物体时能关注重要的特征, 提升特征提取能力. 在主干网络中使用空间金字塔池化SPP模块, 使得模型输入可以输入任意图像高宽比和大小. 在激活函数方面, 进行卷积操作后使用Hardswish激活函数, 应用于整个网络模型. 在损失函数方面, 使用CIoU作为检测框回归的损失函数, 改善定位精度低和训练过程中目标检测框回归速度慢的问题. 实验结果表明, 改进后的检测模型在KITTI 2D数据集上测试, 目标检测的精确率(Precision)提高了2.5%, 召回率(Recall)提高了5.1%, 平均精度均值(mean average precision, mAP)提高了2.3%.
    优先出版日期:  2022-09-14 , DOI: 10.15888/j.cnki.csa.008806
    摘要:
    车辆检测是智能交通系统重要的一个研究方向. 针对监控视角下的车辆检测问题, 提出了一种改进YOLOX算法的车辆检测方法. 使用网络深度更小的YOLOX_S模型, 对网络结构改进. 使用GHOST深度可分离卷积模块代替部分传统卷积, 在保证模型检测精度的同时减少模型参数; 将CBAM注意力模块融合到特征提取网络中, 并添加特征增强结构, 加强特征提取网络获得的特征图语义信息, 增强提取网络对目标的检测能力; 通过使用CIoU_loss优化损失函数, 提高模型边界框的定位精度. 测试实验结果表明, 改进后的网络识别准确率提升了2.01%, 达到95.45%, 证明了改进方法的可行性.
    优先出版日期:  2022-09-14 , DOI: 10.15888/j.cnki.csa.008888
    摘要:
    胶质瘤是在世界范围内致死率排行比较靠前的几种肿瘤之一, 是一种死亡率高、容易复发, 对身体危害极大的恶性疾病. 目前, 核磁共振成像(magnetic resonance imaging, MRI)技术因其成像效果清晰, 不同软组织之间对比鲜明等特点, 现已成为诊断患者胶质瘤较为常用的一种医学手段. 基于胶质瘤原始数据集缺少这一情况, 与辽宁省肿瘤医院合作, 对该医院300名胶质瘤患者MRI图像进行分析, 通过病变判定、病变定位和病变定性3个步骤对原始数据进行分类并进一步分级, 建立胶质瘤原始数据集. 为了证明其后续应用性, 通过分析和实验, 证明原始数据集可被用于图像分类及分割, 并为肿瘤的生长与重建提供图像数据, 对胶质瘤的临床研究和应用给予充分的帮助.
    优先出版日期:  2022-09-08 , DOI: 10.15888/j.cnki.csa.008920
    摘要:
    相比基于特征点的传统图像特征匹配算法, 基于深度学习的特征匹配算法能产生更大规模和更高质量的匹配. 为获取较大范围且清晰的路面裂缝图像, 并解决弱纹理图像拼接过程中发生的匹配对缺失问题, 本文基于深度学习LoFTR (detector-free local feature matching with Transformers)算法实现路面图像的拼接, 并结合路面图像的特点, 提出局部拼接方法缩短算法运行的时间. 先对相邻图像做分割处理, 再通过LoFTR算法产生密集特征匹配, 根据匹配结果计算出单应矩阵值并实现像素转换, 然后通过基于小波变换的图像融合算法获得局部拼接后的图像, 最后添加未输入匹配网络的部分图像, 得到相邻图像的完整拼接结果. 实验结果表明, 与基于SIFT (scale-invariant feature transform)、SURF (speeded up robust features)、ORB (oriented FAST and rotated BRIEF)的图像拼接方法比较, 研究所提出的拼接方法对路面图像的拼接效果更佳, 特征匹配阶段产生的匹配结果置信度更高. 对于两幅路面图像的拼接, 采用局部拼接方法耗费的时间较改进之前缩短了27.53%. 研究提出的拼接方案是高效且准确的, 能够为道路病害监测提供总体病害信息.
    优先出版日期:  2022-09-08 , DOI: 10.15888/j.cnki.csa.008921
    摘要:
    针对光伏发电功率的波动性与随机性对调度部门的负荷预测以及电网安全运行带来的严峻挑战, 提出了一种基于变分模态分解(VMD)和布谷鸟搜索(CS)算法优化的双向长短期记忆网络(BiLSTM)光伏发电功率预测方法. 首先使用VMD将光伏功率序列分解成不同频率的子模态, 通过皮尔逊相关性分析确定影响各模态的关键气象因子. 其次分别构建注意力机制(AM)和BiLSTM混合的光伏发电功率预测模型, 利用CS算法获取网络最优的权重和阈值. 最后, 将不同模态的预测结果相叠加, 得到最终的预测结果. 通过对亚利桑那州地区光伏电站输出功率进行预测, 验证了所提模型的有效性.
    优先出版日期:  2022-09-08 , DOI: 10.15888/j.cnki.csa.008911
    摘要:
    针对原始哈里斯鹰优化算法(HHO)存在的收敛精度低、收敛速度慢、易陷入局部最优等不足, 提出了一种基于混合策略的改进哈里斯鹰优化算法(HSHHO). 首先, 在种群初始化阶段引入Sobol序列, 生成均匀分布的种群, 提高种群的多样性, 有利于提高算法的收敛速度; 其次, 引入limit阈值, 令算法在一定迭代次数没有获得更优值后执行全局探索操作, 提高算法跳出局部最优解的能力, 改善HHO在迭代后期只执行开发阶段而易陷入局部最优的缺陷; 最后, 提出一种动态的反向学习机制, 提高算法的收敛精度以及跳出局部最优的能力. 在9个基准函数和6个CEC2017函数上进行测试, 与其它多种优化算法、HHO变体作对比, 验证所提出策略的有效性, 并进行Wilcoxon符号秩检验、Friedman检验和Quade检验等非参数检验. 实验结果表明, HSHHO在收敛速度、寻优精度和统计测试方面具有较为优秀的性能. 最后, 还应用到焊接梁设计优化问题, 结果表明改进的算法对于带约束的实际工程优化问题也具有更好的效果.
    优先出版日期:  2022-09-08 , DOI: 10.15888/j.cnki.csa.008910
    摘要:
    文本生成图像算法对生成图像的质量和文本匹配度有很高的要求. 为了提高生成图像的清晰度, 在现有算法的基础上改进生成对抗网络模型. 加入动态记忆网络、细节校正模块(DCM)、文本图像仿射组合模块(ACM)来提高生成图片的质量. 其中动态记忆网络可以细化模糊图像并选择重要的文本信息存储, 以提高下一阶段生成图像的质量. DCM纠正细节, 完成合成图像中缺失部分. ACM编码原始图像特征, 重建与文本描述无关的部分. 改进后的模型实现了两个目标, 一是根据给定文本生成高质量的图片, 同时保留与文本无关的内容. 二是使生成图像不再较大程度依赖于初始图像的生成质量. 通过在CUB-200-2011鸟类数据集进行研究实验, 结果表明相较之前的算法模型, FID (Frechet inception)有了显著的改善, 结果由16.09变为10.40. 证明了算法的可行性和先进性.
    优先出版日期:  2022-09-08 , DOI: 10.15888/j.cnki.csa.008905
    摘要:
    当代社会睡眠问题日益突出, 及时检测评估睡眠质量有助于诊断睡眠疾病. 针对目前市面上睡眠监测类产品发展参差不齐的现状, 本文搭建了一个基于双通道脑电信号的在线实时睡眠分期系统, 利用第三方接口脑环获取脑电数据, 结合CNN-BiLSTM神经网络模型, 在PC电脑端实现了在线的实时睡眠分期与音乐调控功能. 系统使用基于卷积神经网络CNN和双向长短时记忆神经网络BiLSTM相结合的算法模型对脑电信号进行自动特征提取, CNN能够提取高阶特征, BiLSTM可以捕捉睡眠数据前后的依赖性和关联性, 睡眠分期准确率更高. 实验结果表明, 本文算法模型在Sleep-EDF公共数据集上的四分类任务中取得了92.33%的分期准确率, 其Kappa系数为0.84, 本系统的实时睡眠分期功能在自采集睡眠数据分期实验中取得79.17%的分期准确率, 其Kappa系数为0.70. 相比其他睡眠监测类产品, 本系统睡眠分期准确率更高, 应用场景更多样, 实时性和可靠性强, 并且可以根据分期结果对用户进行相应的音乐调控, 改善用户睡眠质量.
    优先出版日期:  2022-09-01 , DOI: 10.15888/j.cnki.csa.008915
    摘要:
    影响力最大化的目的是在网络中发现能够触发最大数量的剩余节点参与到信息传播过程的一小群节点. 目前异质信息网络中影响力最大化的研究通常从网络中抽取同质子图、或基于节点局部结构的元路径进行节点影响力的评估, 没有考虑节点的全局特征和网络中高影响力节点间的集群现象给种子集合最终扩散范围造成的影响损失. 文中提出了一种基于社区与结构熵的异质信息网络影响力最大化算法, 该算法能够有效地从局部和全局两个方面度量节点的影响. 首先, 通过构建元结构保留节点在网络中的局部结构信息和异质信息度量节点的局部影响; 其次, 利用节点所属社区在整个网络中的权重占比对节点的全局影响进行度量; 最后, 综合求出节点的最终影响并选出种子集合. 在真实数据集上进行的大量实验结果表明所提算法有较好的有效性和效率.
    优先出版日期:  2022-09-01 , DOI: 10.15888/j.cnki.csa.008808
    摘要:
    作为衡量空气污染物浓度的重要指标, 对PM2.5浓度进行监控预测, 能够有效地保护大气环境, 进一步地减少空气污染带来的危害. 随着空气质量自动监测站的大范围建立, 由传统的机器学习搭建的空气质量预测模型已经不能满足当今的需求. 本文提出了一种基于多头注意力机制和高斯概率估计的高斯-注意力预测模型, 并对沈阳市某监测站点的数据进行了训练和测试. 该模型考虑了PM2.5浓度受到其他空气质量数据的影响, 将空气质量数据的分层时间戳(周、日、小时)的信息对齐作为输入, 使用多头注意力机制对于不同子空间的时间序列关联特征进行提取, 能够获得更加完善有效的特征信息, 再经过高斯似然估计得到预测结果. 通过与多种基准模型进行对比, 相较于性能较优的DeepAR, 高斯-注意力预测模型的MSE、MAE分别下降了21%、15%, 有效地提高了预测准确率, 能够较准确地预测出PM2.5浓度.
    优先出版日期:  2022-09-01 , DOI: 10.15888/j.cnki.csa.008902
    摘要:
    一致性检查是关于计算流程模型与其执行实际之间相符情况的问题. 运行时一致性检查因反馈的实时性和良好的应用前景, 成为当前一致性检查的新问题. 针对每个新产生的事件, 如何以较小的性能代价计算得到最优的一致性检查结果是运行时一致性检查的难点. 基于流程模型的结构信息(refined process structure tree, RPST)提出一致性监控树(conformance monitoring tree, CMT), 基于CMT提出求解最优一致性结果的动态规划算法. 通过3个实验数据集表明, 对比已有相关工作, 本文算法具备较明显的性能优势.
    优先出版日期:  2022-09-01 , DOI: 10.15888/j.cnki.csa.008904
    摘要:
    入侵检测技术作为计算机防护的主要技术手段, 因具有适应性强、能识别新型攻击的优点而被广泛研究, 然而识别率和误报率难以保证是该技术的主要瓶颈. 为了提升异常检测技术的识别率并降低误报率, 提出了一种终端级入侵检测算法(terminal-level intrusion detection algorithm, TL-IDA). 在数据预处理阶段把终端日志切割成连续的小块命令序列, 并引入统计学的常用指标为命令序列构建特征向量, 再使用TL-IDA算法通过特征向量对用户建模. 在此基础上, 还提出了一种滑动窗口判别法, 用于判断系统是否遭受攻击, 从而提升入侵检测算法的性能. 实验结果表明, TL-IDA算法的平均识别率和误报率分别达到了83%和15%, 优于同类的基于异常技术的终端级入侵检测算法ADMIT、隐马尔可夫模型法等.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008825
    摘要:
    在研制量子芯片时对其性能进行测评, 以校准量子算法实际执行结果与理论结果的拟合程度是量子计算优于经典计算的重要一步. 然而, 目前国内外对量子芯片性能测评方面并没有统一的基准测试, 对于量子芯片局部指标的测评标准容易导致人们对芯片整体性能的误解. 鉴于此, 本文首先简述现有的量子芯片性能指标, 其次通过对测评方法进行分类, 概述现今量子芯片测评方法, 最后总结量子芯片测评技术的现存问题并对未来的测评技术进行展望. 本综述可为从事相关工作的人员进行查阅提供便利.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008889
    摘要:
    针对传统图像拼接算法速度较慢, 难以满足获取大分辨率全景图像的实时性要求, 本文提出一种基于CUDA的快速鲁棒特征(speeded-up-robust features, SURF)图像配准算法, 从GPU线程执行模型、编程模型和内存模型等方面, 对传统SURF算法特征点的检测和描述进行CUDA并行优化; 基于FLANN和RANSAC算法, 采用双向匹配策略进行特征匹配, 提高配准精度. 结果表明, 相对串行算法, 本文并行算法对不同分辨率的图像均可实现10倍以上的加速比, 而且配准精度较传统配准算法提高17%, 精度最优可高达96%. 基于CUDA加速的SURF算法可广泛应用于安防监控领域, 实现全景图像的实时配准.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008897
    摘要:
    针对不同个体的脑电信号差异大且易受到环境因素影响的问题, 结合去基线干扰及脑电通道选择方法, 提出一种基于连续卷积神经网络的情绪分类识别算法. 首先进行基线信号的微分熵(differential entropy, DE)特征的选取研究, 将数据处理为多通道输入后使用连续卷积神经网络进行分类实验, 然后选择最佳电极个数. 实验结果表明, 将实验脑电信号微分熵与被试者实验脑电前一秒的基线信号微分熵的差值映射为二维矩阵后, 在频率维度组合为多通道的形式作为连续卷积神经网络的输入, 在22通道上唤醒度和效价的分类平均准确率为95.63%和95.13%, 接近32通道的平均准确率.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008898
    摘要:
    目前关于集成学习的泛化性能的研究已取得很大成功, 但是关于集成学习的误差分析还需要进一步研究. 考虑交叉验证在统计机器学习中对于模型性能评估有重要应用, 为此, 应用组块3×2交叉验证和k折交叉验证方法为每个样本点进行赋予权重的预测值的集成, 并进行误差分析. 在模拟数据和真实数据上进行实验, 结果表明基于组块3×2交叉验证的集成学习预测误差小于单个学习器的预测误差, 并且集成学习的方差比单个学习器方差小. 与基于k折交叉验证的集成学习方法相比, 基于组块3×2交叉验证的泛化误差小于基于k折交叉验证的泛化误差, 说明基于组块3×2交叉验证的集成学习模型稳定性好.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008899
    [摘要] (102) [HTML] (0) [PDF 1.41 M] (127)
    摘要:
    由于足球比赛场景中密集人群、移动小目标居多, YOLOv3算法存在检测精确度较低且模型参数量较大等问题, 使其无法部署在资源算力有限的移动设备上, 本文提出了一种基于改进YOLOv3的行人检测方法, 将Darknet-53主干特征提取网络替换为更加高效且轻量化的GhostNet网络; 同时选取了4个尺度的检测分支层并采用K-means++算法改善anchor box的聚类效果; 添加空间金字塔池化对输入图像实现相同大小的输出; 提出CIoU损失函数来计算目标定位损失值; 添加heatmap热力图可视化并在训练中使用Mosaic数据增强. 实验结果表明, YOLOv3-GhostNet在VOC融合数据集上mAP达到90.97%的同时相比YOLOv3算法提高了1.75%, 参数量减少了约81.4%且实时检测速率提高了约1.5倍, 在小型移动设备上表现出不错的检测效果.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008900
    摘要:
    针对货车利用躲避摄像头等手段在城市道路中不按规定时间、规定线路行驶, 使得车辆不能被准确识别的问题, 提出基于改进Faster RCNN的城市道路货车检测方法. 该方法以Faster RCNN为基础模型, 通过对传入主干网络的车辆图片进行卷积和池化等操作来提取特征, 其中增加特征金字塔网络(FPN)提升对多尺度目标检测的精度; 同时将K-means聚类算法应用在数据集上以获取新的锚点框; 利用RPN (region proposal network)生成建议框; 并使用CIoU (complete-IoU)损失函数代替原算法的smoothL1损失函数以提升检测车辆的精确性. 实验结果显示, 改进后的Faster RCNN相比原算法对货车检测的平均精度(AP)提高7.2%, 召回率(recall)提高6.1%, 减少了漏检的可能, 在不同场景下具有良好的检测效果.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008901
    摘要:
    辅助投保人了解保险产品的条款是保险应用关注的热点问题之一, 借助知识图谱技术辅助人身保险业务开展是一种可行的方法. 本文首先从多源数据中提取并构建人身保险知识图谱LIKG. 具体而言, 构建BERT-IDCNN-BiLSTM-CRF模型提取非结构化文本数据的实体, 通过多种短文本相似度算法以及集成排序算法完成实体对齐; 设计并使用Bootstrapping和分类预测两阶段抽取方法对保险产品进行属性填充. 然后, 根据构建的LIKG, 设计开发原型系统, 该系统使用实体抽取和属性抽取算法提供知识获取功能、设计CF-IIF指标提供属性推荐功能以及实现可视化界面帮助用户快速掌握人身保险产品的信息, 展示LIKG的应用价值.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008893
    摘要:
    针对无线传感器网络中传统的低功耗自适应集簇分层型协议存在的节点能耗过高、网络生存周期短以及负载不均衡等问题, 本文提出了一种异构传感网络下的多目标簇头选举和基于模拟退火的哈里斯鹰路由优化算法(LEACH-MHO). 这种改进算法首先在计算节点最优阈值的基础上, 构建新的考量能耗和负载的适应度函数, 找到最优簇首节点, 保证簇首节点的均匀分布; 再建立基于哈里斯鹰优化器的路径选择策略, 同时嵌入模拟退火算法, 防止过早陷入局部最优; 最后使用评估函数筛选出可加入到最佳路径的簇头, 缩短簇头节点到基站的通信距离. 仿真实验数据表明, 与CREEP、LEACH-C、LEACH算法相比, 本文算法的网络生存寿命分别延长了22.18%、77.83%和180.52%, 能更有效地延长网络生存寿命.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008894
    摘要:
    在设计实时异构系统中的容错调度算法时, 既要考虑到实时性的约束, 又要最大化系统的可靠性. 此外, 异构系统中的并行应用调度问题已经被证明了是NP完全问题. 现有的容错调度算法大多采用复制技术来提升系统的可靠性, 但是任务的多次执行会导致应用执行时间变长, 系统实时性下降. 为此, 提出了一个基于积极复制技术的容错调度算法, 该算法连续的复制任务集中对当前系统实时性影响最小的任务, 然后将任务集中的所有任务调度至最早完成的处理器, 用以在满足实时性约束的同时, 提升系统的可靠性. 实验表明, 相比于同样着眼于实时异构系统的DB-FTSA算法, 该算法在实时性约束严格的情况下, 可靠性有较大提升.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008891
    摘要:
    文本意图识别任务中常面临训练数据不足的问题, 且由于文本数据离散性导致在标签不变的条件下进行数据增强并提高原模型性能具有一定困难, 为解决小样本意图识别任务中的上述问题, 提出一种分步式数据增强与阶段性训练策略相结合的方法. 该方法从全局和局部两个角度将原始数据在全体语句和同类别中的样本对上进行递进式增强, 并在模型训练期间根据递进层次的不同划分阶段进行学习, 最后在多个意图识别数据集上进行实验以评估其有效性. 实验结果表明, 该方法可以有效提高小样本环境中意图识别模型的准确率, 同时模型的稳定性也得到了提升.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008890
    摘要:
    针对目前现有的新闻推荐系统未能充分考虑新闻的语义信息, 对新闻文本建模因子的单一性问题, 提出注意力与多视角融合的新闻推荐算法(Attention-BodyTitleEvent, Attention-BTE). 利用BERT模型以及注意力机制分别对新闻标题、正文、事件向量化, 将三者融合即新闻向量化表示, 再对候选新闻和用户浏览新闻数据进行处理, 分别得到对应的候选新闻向量化和用户向量化, 并将其进行点乘得到用户点击候选新闻的概率, 即新闻推荐结果. 实验数据表明, 与其他的新闻推荐算法相比, 该模型在F1指标上提高了约6%.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008885
    摘要:
    基于特征金字塔网络的目标检测算法没有充分考虑不同目标间的尺度差异以及跨层特征融合过程中高频信息损失问题, 使网络无法充分融合全局多尺度信息, 导致检测效果不佳. 针对这些问题, 提出了尺度增强特征金字塔网络. 该方法对特征金字塔网络的侧向连接和跨层特征融合方式进行了改进, 设计具有动态感受野的多尺度卷积组作为侧向连接来充分提取每一个目标的特征信息, 引入基于注意力机制的高频信息增强模块来促进高层特征与底层特征融合. 基于MS COCO数据集的实验结果表明, 该方法能有效提高各尺度目标的检测精度, 整体性能优于现有方法.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008886
    摘要:
    在云存储环境中, 数据所有者不仅能够借助云服务器存储数据, 而且可以通过云服务器与其它用户共享数据. 但是, 当数据所有者通过云服务器存储和共享数据时, 可能存在一些安全问题. 首先, 数据所有者需要保证其数据的可认证性. 其次, 数据所有者的数据中可能包含其敏感信息, 比如姓名、年龄等信息. 因此, 数据所有者在与其他用户共享数据时, 可能会泄露自己的敏感信息. 为了解决上述问题, 本文提出了一个无证书的可净化签名方案, 用于解决云存储环境下共享数据的可认证性与敏感信息隐藏. 具体而言, 所提方案基于无证书密码学, 避免了传统公钥基础设施中昂贵的证书管理开销, 消除了基于身份密码学中复杂的密钥托管缺陷. 此外, 所提方案加入了访问控制, 使得存储在云服务器中的数据只能被授权用户访问. 最后, 安全分析说明了所提方案的安全性; 性能分析体现了所提方案的高效性.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008887
    摘要:
    随着信息技术的发展, 推荐系统作为信息过载时代的重要工具, 正扮演着越来越重要的角色. 基于内容和协同过滤的传统推荐系统, 倾向于以静态方式对用户与商品交互进行建模, 以获取用户过去的长期偏好. 考虑到用户的偏好往往是动态的, 且具有非持续性和行为依赖性, 序列化推荐方法将用户与商品的交互历史建模为有序序列, 能有效捕获商品的依赖关系和用户的短期偏好. 然而多数序列化推荐模型过于强调用户-商品交互的行为顺序, 忽视了交互序列中的时间信息, 即隐式假设了序列中相邻商品具有相同的时间间隔, 在捕捉包含时间动态的用户偏好上具有局限性. 针对以上问题, 文中提出基于自注意力网络的时间感知序列化推荐(self-attention-based network for time-aware sequential recommendation, SNTSR)模型, 该模型将时间信息融入改进的自注意力网络中, 以探索动态时间对下一商品预测的影响. 同时, SNTSR独立计算位置相关性, 以消除可能引入的噪声相关性, 增强捕获用户序列模式的能力. 在两个真实世界数据集上的大量实验表明, SNTSR始终优于一组先进的序列化推荐模型.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008870
    摘要:
    针对室内环境下智能监控视频对光照变化产生的阴影难以识别、分割困难等问题, 提出一种结合迁移学习方式和SENet通道注意力机制的UNet网络. 首先, 针对阴影特征模糊难以有效提取的问题, 在UNet模型的上采样部分, 添加SENet通道注意力机制, 在不增加网络参数的同时, 提高有效区域的特征权重; 并将预训练好的VGG16网络迁移到UNet模型中, 实现特征迁移和参数共享, 提高模型的泛化能力, 减少训练成本; 最后通过解码器得到分割结果. 实验结果表明, 改进的UNet算法相比于原UNet算法在对运动目标的分割精度上达到了96.09%, 对阴影的分割精度上达到92.24%, 平均交并比(MIOU)达到92.58%, 算法性能指标有显著提升.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008876
    摘要:
    针对文化算法收敛速度慢、易陷入局部最优解以及种群多样性少的问题, 本文对文化算法进行优化设计, 提出一种将带有精英保留策略的遗传算法(GA)和模拟退火算法(SA)纳入文化算法(CA)框架的混合优化算法. 此算法基于协同进化的思想, 算法分为下层种群空间和上层信念空间, 两个空间采用了相同的进化机制, 但使用不同的参数. 在文化算法的基础上加入带有精英保留策略的遗传算法, 使种群中的优秀个体直接进入下一代, 以此提高收敛速度; 加入模拟退火算法, 利用其具有突变的特点, 概率性的跳出局部最优并接受劣质解, 以此增加种群多样性. 函数优化结果证明了算法的有效性, 将此算法用于求解最小化最大完工时间的流水车间调度问题, 仿真结果显示, 此算法在收敛速度和精度方面都优于其他几个具有代表性的算法.
    优先出版日期:  2022-08-26 , DOI: 10.15888/j.cnki.csa.008652
    摘要:
    为了在发生轻微交通事故时, 快速使事故车辆驶离现场, 保证道路畅通, 提出了一种车辆碰撞检测及责任判定模型. 首先结合SSD目标检测算法(single shot multibox detector)和MobileNet轻量级深度网络模型, 对其进行改进以获取每一帧视频图像中运动目标的位置和大小信息, 实现对车辆识别与检测. 其次, 利用卡尔曼滤波器对连续图像帧之间的运动目标建立对应匹配关系, 预测目标的运动状态, 对目标的位置及运动趋势做出判断, 实现车辆轨迹跟踪. 随后通过车辆目标检测框的交并比判断是否发生碰撞. 最后针对直行道路中车辆的速度、方向信息结合道路安全条例及机动车事故快速方法对事故车辆进行责任判定. 结果分析表明, 该研究可实现直行道路场景下的追尾及变道引发的车辆碰撞检测及责任判定.
    优先出版日期:  2022-08-24 , DOI: 10.15888/j.cnki.csa.008877
    [摘要] (140) [HTML] (0) [PDF 2.53 M] (164)
    摘要:
    信息时代推进盲文数字化, 关乎我国广大盲人文化素质的提高和生活水平的改善. 本文实现了一种基于国家通用盲文标调规则的汉盲转换系统, 能够快速生成海量符合国家通用盲文方案的数字化资源, 满足视障人士无障碍获取信息的需求. 此系统按通用盲文规则处理汉语文本, 将其转换为符合标调规则、简写规则的盲文结果. 测试结果表明, 此系统可以准确处理标调规则、简写规则, 可得到准确的符合国家通用盲文方案的盲文数字化结果. 声调省写覆盖率、韵母简写覆盖率和篇幅增加量均与国家通用盲文方案的理论值相当, 能够快速处理长篇语料文件, 程序执行效率高, 具有实用价值, 可以用于推广国家通用盲文, 促进我国盲文数字化无障碍建设.
    优先出版日期:  2022-08-24 , DOI: 10.15888/j.cnki.csa.008874
    摘要:
    块对角化(block diagonalization, BD)算法是一种多输入多输出的传统线性预编码算法, 其核心思想是通过奇异值分解(singular value decomposition, SVD)找到干扰矩阵零空间的正交基, 从而完全消除多用户干扰(multiuser interference, MUI), 但是随着收发端数目的增多, BD预编码算法所需的计算复杂也大大增加, 成为了制约其发展的关键因素之一. 为此, 本文提出了一种改进的低复杂度BD算法——基于正交分解中的施密特正交化求逆与格基规约操作的组合算法, 对传统BD算法两次高复杂度操作的奇异值分解用施密特正交化和格基规约操作进行替换, 从而降低算法复杂度. 结果表明, 本文改进算法的计算复杂度上降低了46.7%, 系统和容量上得到了2–10 bits/Hz的提高, 同时误码率上得到了2个量级的优化.
    优先出版日期:  2022-08-24 , DOI: 10.15888/j.cnki.csa.008867
    [摘要] (106) [HTML] (0) [PDF 1.57 M] (143)
    摘要:
    白内障是一种主要导致视觉损伤的眼病. 早期干预和白内障手术是改善患者视力和生活质量的主要手段. 眼前节光学相干断层成像图像 (anterior segment optical coherence tomography, AS-OCT) 是一种新型眼科图像, 其具有非接触、高分辨率、检查快速等特点. 在临床上, 眼科医生已经逐渐采用AS-OCT图像进行眼科疾病如青光眼的诊断, 然而尚未有研究工作利用它进行皮质性白内障 (cortical cataract, CC) 自动分类. 为此, 提出了一个基于AS-OCT图像的自动皮质性白内障分类框架, 由图像预处理、特征提取、特征筛选和分类等4部分组成. 首先, 利用反光区域去除和对比度增强方法进行图像预处理; 紧接着使用灰度共生矩阵 (grey level co-occurrence matrix, GLCM)、灰度区域大小矩阵 (grey level size zone matrix, GLSZM) 和邻域灰度差矩阵 (neighborhood grey tone difference matrix, NGTDM) 方法从皮质区域提取了22个特征; 然后, 采用斯皮尔曼相关系数方法对提取的特征进行特征重要性分析并筛除冗余特征; 最后利用线性支持向量机方法进行分类. 在一个临床AS-OCT图像数据集上的实验结果表明, 所提出的皮质性白内障分类框架准确率、召回率、精确率和F1分别达到86.04%, 86.18%, 88.27%和86.35%, 取得与先进的深度学习算法接近的性能, 表明其具有作为辅助眼科医生进行皮质性白内障临床诊断工具的潜力.
    优先出版日期:  2022-08-24 , DOI: 10.15888/j.cnki.csa.008883
    摘要:
    随着海洋气象业务不断发展, 海洋气象服务也逐渐向专业化、可视化及智慧化方向发展, 综合性海洋气 象服务已不能满足港口气象服务实际业务需求. 为保障港口安全生产, 提升港口气象服务效能, 本文提出了一 种基于面向服务架构(service oriented architecture, SOA)的港口智慧气象服务系统建设方案. 通过对气象、港口、地理信息 等多源异构业务数据进行动态集成, 结合 XML (extensive markup language)、Web service 、数据仓库、中间件模 式、WebGIS 、消息队列等计算机相关技术, 实现了港区气象业务数据实时监测, 港口专业预报预警, 应急预案 制作发布、专业用户及气象要素阈值管理等功能. 系统业务应用结果表明, 该系统满足港口专业气象服务需求, 有效减少了海洋气象灾害对港区生产活动的不利影响, 同时系统可扩展性强, 具有较高应用推广价值.
    优先出版日期:  2022-08-24 , DOI: 10.15888/j.cnki.csa.008884
    摘要:
    程序依赖图往往只能根据语句中变量的定义使用关系来判定数据依赖而无法从语义上精准判断, 从而容易引入虚假依赖关系, 使得缺陷修复的过程中使用错误信息造成修复失败. 因此, 本文将利用抽象属性对与空对象或空指针有关的虚假依赖进行剪枝, 提出基于抽象语义的程序依赖图减少与程序缺陷语义无关的依赖关系分析, 以完成空指针引用修复. 依据分析获取的依赖关系, 在空指针引用的不同修复策略的指导下实现一种多策略的修复方案, 在尽可能减小修复副作用的前提下完成空指针引用缺陷的修复. 本文利用Defects4J中的空指针引用对实现的修复工具DTSFix进行实验评估, 结果显示DTSFix的修复效果远远高于对比工具, 证明了方法的有效性.
    优先出版日期:  2022-08-24 , DOI: 10.15888/j.cnki.csa.008909
    摘要:
    如今, 全球导航卫星系统(GNSS)基本解决了室外开阔环境下的实时高精度定位问题. 然而, 随着城市化进程加快, 为受到GNSS信号干扰的密集建筑物场所提供行人导航服务也产生了大量需求, 并推动室内定位技术近些年取得了较大进展. 在此基础上, 由于目前还没有任何单一普适的定位方式解决室内外环境的无缝过渡, 因此, 为了解决导航领域“最后一公里”的难题, 无缝导航技术开启了新的热点与课题. 本文总结了行人室内导航的多传感器融合技术: (1) 从基于无线射频信号到非电信号分别分析比较单一传感器在室内定位中的优势与局限性; (2) 介绍了室内多传感器融合领域的定位手段, 包括多模式指纹融合、基于几何测距融合与基于PDR技术融合. 最后, 研究了室内定位技术应用于无缝导航的解决方案, 展示了室内外环境下无缝定位的挑战与前景. 本工作为后续实现高精度无缝定位研究提供参考与帮助.
    优先出版日期:  2022-08-24 , DOI: 10.15888/j.cnki.csa.008907
    摘要:
    本文提出了一种多模态情绪识别方法, 该方法融合语音、脑电及人脸的情绪识别结果来从多个角度综合判断人的情绪, 有效地解决了过去研究中准确率低、模型鲁棒性差的问题. 对于语音信号, 本文设计了一个轻量级全卷积神经网络, 该网络能够很好地学习语音情绪特征且在轻量级方面拥有绝对的优势. 对于脑电信号, 本文提出了一个树状LSTM模型, 可以全面学习每个阶段的情绪特征. 对于人脸信号, 本文使用GhostNet进行特征学习, 并改进了GhostNet的结构使其性能大幅提升. 此外, 我们设计了一个最优权重分布算法来搜寻各模态识别结果的可信度来进行决策级融合, 从而得到更全面、更准确的结果. 上述方法在EMO-DB与CK+数据集上分别达到了94.36%与98.27%的准确率, 且提出的融合方法在MAHNOB-HCI数据库的唤醒效价两个维度上分别得到了90.25%与89.33%的准确率. 我们的实验结果表明, 与使用单一模态以及传统的融合方式进行情绪识别相比, 本文提出的多模态情绪识别方法有效地提高了识别准确率.
    优先出版日期:  2022-08-19 , DOI: 10.15888/j.cnki.csa.008880
    摘要:
    针对目前编译优化领域的深度学习模型普遍采用单任务学习而难以利用多个任务间的相关性提升模型整体编译加速效果的问题, 提出了一种基于多任务深度学习的编译优化方法. 该方法使用图神经网络 (GNN) 从C程序的抽象语法树 (ASTs) 和数据控制流图 (CDFGs) 中学习得到程序特征, 然后对程序特征同步预测HXDSP软件流水启动间隔和循环展开因子. 在DSPStone数据集上的实验结果表明, 该多任务方法取得了相对于单任务方法12%的性能提升.
    优先出版日期:  2022-08-19 , DOI: 10.15888/j.cnki.csa.008878
    摘要:
    针对地形生成算法在易用性、可控性、真实感、速度等方面难以平衡的问题, 提出了一种基于概要图的地形生成方法. 该方法使用生成对抗网络, 在隐空间中对地形坡度、坡向等信息建模, 使生成的地形符合用户手绘概要图约束. 提出基于地形高度图的概要图提取算法, 可从真实地形高度图中提取出类似用户手绘效果的概要图, 快速构建数据集. 提出多尺度地形细节填充算法, 通过引入多尺度的概念, 使地形纹理细节得到了动态补充, 真实感美观度大幅提升. 提出了基于用户反馈的地形满意度评价方法, 并据此进行实验验证, 结果表明该地形生成方法可以准确高效地生成符合用户预期的数字地形.
    优先出版日期:  2022-08-19 , DOI: 10.15888/j.cnki.csa.008875
    摘要:
    在联邦学习背景下, 由于行业竞争、隐私保护等壁垒, 用户数据保留在本地, 无法集中在一处训练. 为充分利用用户的数据和算力, 用户可通过中央服务器协同训练模型, 训练得到的公共模型为用户共享, 但公共模型对于不同用户会产生相同输出, 难以适应用户数据是异质的常见情形. 针对该问题, 提出一种基于元学习方法Reptile的新算法, 为用户学习个性化联邦学习模型. Reptile可高效学习多任务的模型初始化参数, 在新任务到来时, 仅需几步梯度下降就能收敛到良好的模型参数. 利用这一优势, 将Reptile与联邦平均(federated averaging, FedAvg)相结合, 用户终端利用Reptile处理多任务并更新参数, 之后中央服务器将用户更新的参数进行平均聚合, 迭代学习更好的模型初始化参数, 最后将其应用于各用户数据后仅需几步梯度下降即可获得个性化模型. 实验中使用模拟数据和真实数据设置了联邦学习场景, 实验表明该算法相比其他算法能够更快收敛, 具有更好的个性化学习能力.
    优先出版日期:  2022-08-19 , DOI: 10.15888/j.cnki.csa.008827
    [摘要] (206) [HTML] (0) [PDF 2.25 M] (135)
    摘要:
    在通用的目标检测算法中, 目标多变的尺度和特征融合利用一直是限制目标检测任务的难题. 针对上述问题, 首先文中提出了多路径特征融合模块, 模块采用跨尺度跨路径特征融合的方法, 强化输入输出特征之间的联系, 缓解了特征信息在传递时的稀释问题. 同时, 文中通过改进注意力模型提出了尺度感知模块, 该模块能根据目标的尺度自行地选择感受野大小, 从而使模型易于识别多尺度目标. 将尺度感知模块嵌入到多路径特征融合模块中, 使模型的特征提取和利用能力均得到提升. 经实验验证, 文中提出的算法在数据集PASCAL VOC和MS COCO上的平均检测精度分别达到了82.2%和38.0%, 相比基线FPN Faster RCNN分别提升了1.3%和0.6%, 其中对小尺度目标的检测效果提升最为显著.
    优先出版日期:  2022-08-19 , DOI: 10.15888/j.cnki.csa.008830
    摘要:
    现实世界的物体图像往往存在较大的类内变化, 使用单一原型描述整个类别会导致语义模糊问题, 为此提出一种基于超像素的多原型生成模块, 利用多个原型分别表示物体的不同语义区域, 通过图神经网络在生成的多个原型间利用上下文信息执行原型校正以保证子原型的正交性. 为了获取到更准确的原型表示, 设计了一种基于Transformer的语义对齐模块, 以挖掘查询图像特征和支持图像的背景特征中蕴含的语义信息, 此外还提出了一种多尺度特征融合结构, 引导模型关注同时出现在支持图像和查询图像中的特征, 提高对物体尺度变化的鲁棒性. 所提出的模型在PASCAL-5i数据集上进行了实验, 与基线模型相比平均交并比提高了6%.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008868
    摘要:
    针对工业制品缺陷分类存在的样本图像少、分类准确性不足和模型训练耗时长等问题, 提出了一种基于深度森林的人机协同分类模型. 该模型首先通过深度森林对样本图像进行初步识别, 经多粒度扫描模块和级联森林模块提取特征, 得到初始预测结果并分离出识别困难的样本图像; 然后采用人机协同的策略, 采用人工方式随机标注部分识别困难的样本, 再利用K近邻算法对剩余识别困难的样本进行再分类. 通过在公开数据集以及生产线实际采集的真实数据上的实验结果表明, 改进的分类模型在工业制品表面缺陷数据集上的性能优于基线算法.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008869
    摘要:
    室内障碍物的布局会对人群时空分布、疏散安全和效率产生重要影响. 为调查其影响, 构建带有障碍物的单室单出口人群疏散模型. 同时, 通过3种不同的影响因素(即障碍物长度、障碍物与出口距离、障碍物偏离出口中心距离)来分析它们对人群疏散效率和安全的影响. 研究结果发现障碍物长度与疏散效率成正向关系, 而与疏散安全成反向关系; 障碍物与出口距离与疏散效率和安全皆成正向关系; 障碍物偏离出口中心距离与疏散效率和安全成反向关系. 此外, 本研究还使用多目标进化算法来对室内障碍物布局进行优化, 所得结果可以为决策者平衡疏散安全和效率问题提供重要参考.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008836
    [摘要] (100) [HTML] (0) [PDF 1.20 M] (153)
    摘要:
    网络信息体系是我军构建的新一代指挥控制作战体系, 具有动态应对任务和环境变化的优势, 通过对全网作战资源实施优选, 实现作战效能最大化. 随着人工智能等技术的发展, 当前主要依靠预案实施的优选方法无法适应智能、无人设备自进化, 且对战场态势覆盖不足. 针对上述缺陷, 本文以防空反导作战体系为例, 研究在物理节点损毁的情况下的资源集成方案求解问题, 采用down-selection模式将资源集成方案求解问题转化为组合优化问题, 通过增加扰动限制改进了演化初始策略形成机制, 提出了基于演化博弈的资源优选方法. 方法在Netlogo平台上进行了仿真, 验证了有效性, 且对比基于遗传算法的资源优选方法, 所求的方案任务完成度平均提高6.4%.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008861
    摘要:
    日常消毒工作已经成了常态化的工作, 智能消毒机器人是非常有效的一种方式. 机器人通常通过视觉来感知周围环境, 但是基于监督学习的检测算法通常需要大量的标注数据进行训练, 当标注数据量多时, 标注成本非常高, 当标注数据量少时, 模型容易陷入过拟合, 因此少样本目标检测是一种有效的解决途径. 本文以SimDet模型为基础, 提出了SimDet+模型. 第一, 针对消毒场景中的目标检测任务的特点, 增加了自监督预训练的过程, 第二, 因为存在查询图片可供参考, 对分类层进行了改进, 使用余弦相似度代替全连接层来计算置信度, 通过非参数化计算有效避免了过拟合现象. 针对消毒场景, 制作了一份22 min的视频数据集和包含8类物体的检测数据集, 分别用于两个阶段训练. 通过自监督预训练, 有效减少了数据标注成本, 同时下游任务的mAP从0.216 2提升到了0.530 2.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008866
    [摘要] (124) [HTML] (0) [PDF 2.56 M] (143)
    摘要:
    针对无人机航拍场景下的实时目标检测任务, 以YOLOv5为基础进行改进, 给出了一种轻量化的目标检测网络YOLOv5-tiny. 通过将原CSPDarknet53骨干网络替换为MobileNetv3, 减小了网络模型的参数量, 有效提高了检测速度, 并进一步通过引入CBAM注意力模块和SiLU激活函数, 改善了因网络简化后导致的检测精度下降问题. 结合航拍任务数据集VisDrone的特性, 优化了先验框尺寸, 使用了Mosaic, 高斯模糊等数据增强方法, 进一步提高了检测效果. 与YOLOv5-large网络相比, 以降低17.4%的mAP为代价, 换取148%的检测效率(FPS)提升, 且与YOLOv5s相比, 在检测效果略优的情况下, 网络规模仅为其60%.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008873
    摘要:
    随着城市居民绿色低碳出行思想的提高, 网约车合乘出行方式应运而生. 但由于合乘模式涉及到的行驶路线问题, 乘客与乘客、乘客与驾驶员之间容易产生分歧, 并且网约车合乘出行模式的相关成本不明确等诸多问题, 网约车合乘模式没有被大范围推广和应用. 针对网约车合乘出行模式存在的问题, 研究并构建了网约车合乘路径优化模型, 模型中考虑了车辆等待时间成本、行驶距离成本、收益、容量约束以及时间窗约束等. 针对网约车合乘模型的特点, 并基于遗传算法思想, 研究设计了满足合乘模型约束条件的求解遗传算法. 并使用Matlab软件运行算法程序对算例进行求解, 运行44.08 s得到最大利润6 906.297 1元及车辆详细行驶路线, 实验表明, 通过构建的网约车合乘模型和设计的遗传算法, 可以得到合乘路径近似最优解, 证明了模型和算法的可行性和有效性.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008857
    摘要:
    在许多数据挖掘的实际应用中要求每一个类别的实例数量相对平衡. 而独立子空间聚类的熵加权K-means算法(EWKM)会产生不均衡的划分, 聚类质量很差. 本文定义了一种兼顾平衡划分与特征分布的多目标熵, 然后应用该熵改进了EWKM算法的目标函数, 同利用迭代方法和交替方向乘子法设计其求解流程, 并提出基于熵的平衡子空间K-means算法(EBSKM). 最后, 在UCI、UCR等公开数据集进行聚类实验, 结果表明所提算法在准确率和平衡性方面都优于同类算法.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008863
    摘要:
    工业产品的回收再制造有利于降低生产成本和保护环境, 而制定优秀的产品拆解序列规划提高拆解效率、降低回收成本为其关键. 针对回收设备在实际拆解中的因素, 建立一种基于离散鲸鱼算法(DWOA)的拆解序列规划模型. 该模型目标函数以位置改变为代价作为新的评价指标, 利用分层组合的方法快速生成初始群体. 离散鲸鱼算法具有优先保护约束交叉机制、启发式变异、优秀的全局和局部搜索能力. 以回收上橡皮板和空气围带进行对比实验, 结果表明在相同时间下, 离散鲸鱼算法的算法稳定性、寻优能力、收敛速度都要优于其他算法.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008864
    摘要:
    神经过程(NP)能够结合神经网络和高斯过程的优势, 通过少量上下文数据估计不确定性分布函数, 实现函数回归功能. 现已应用于数据补全、分类等多种机器学习任务. 但面对二维数据回归问题(如图像数据补全), 神经过程预测准确度有限且对上下文数据的拟合存在欠缺. 为此, 将卷积神经网络(CNN)整合到神经过程中, 基于证据下界和损失函数推导, 构造了面向图像的神经过程(IFNP)模型.在IFNP基础上, 设计了适用于IFNP的局部池化聚合模块和全局交叉注意力模块, 并构造出性能明显优于NP和IFNP的的面向图像的注意力神经过程(IFANP)模型. 最后, 相关模型应用于MNIST及CelebA数据集, 通过定性与定量分析相结合, 展现出IFNP的可扩展性, 证实了IFANP更佳的数据补全及细节拟合能力.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008837
    摘要:
    为解决有限训练样本下的高光谱遥感图像分类特征提取不充分的问题, 该论文提出了多尺度3D胶囊网络方法来助力高光谱图像分类. 相比传统的卷积神经网络, 所提出的网络具有等变性且输入输出形式都是向量形式的神经元而非卷积神经网络中的标量值, 有助于获取物体之间的空间关系及特征之间的相关性, 且在有限训练样本下能避免过拟合等问题. 该网络通过3种不同尺度的卷积核操作对输入图像进行特征提取来获取不同尺度的特征. 然后3个分支分别接不同的3D胶囊网络来获取空谱特征之间的关联. 最后将3个分支得到的结果融合在一起, 采用局部连接并通过间隔损失函数得到分类结果. 实验结果表明, 该方法在开源的高光谱遥感数据集上具有很好的泛化性能, 且相比其他先进的高光谱遥感图像分类方法具有较高的分类精度.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008838
    摘要:
    近年来, 数字信号调制识别以其良好的信息保密性和抗噪声性, 逐渐成为了无线通信领域的一个重要研究方向. 星座图作为调制识别的重要特征之一, 由于在特征提取过程中不需要接收信号的先验信息, 因此在特征提取方面具有明显的优势. 根据上述原因, 本文提出了基于星座图的数字信号调制方法综述. 具体而言, 本文将首先分析星座图的基本原理; 其次通过总结现有的基于星座图的数字信号调制识别方案, 分析了星座图在各个研究方向的特点. 最后, 本文给出了基于星座图方法的数字调制识别方案的发展趋势以及未来期望.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008871
    摘要:
    在考虑用户隐私的保护多源域数据背景下预测疾病得分的问题中, 来自不同源域的数据分散存储无法合并, 且可能服从不同的分布, 因此传统的机器学习方法无法合理地利用源域数据的信息. 本文结合联邦学习的思想和基于样本的迁移学习方法, 提出了联邦重要性加权方法, 通过将源域的样本重用于目标域的预测任务, 而且不需要进行源域之间的数据共享, 实现了在保护源域的数据隐私的情况下利用分布不同的多源域的信息提升目标域预测的精度. 并且基于提出的方法, 本文构造了一种加权模型并提供了一个简洁通用的算法用于求解目标域的预测模型. 数值模拟以及实证结果表明, 相对于未考虑分布迁移的传统方法, 联邦重要性加权方法可以有效地利用多源域数据的信息, 在目标域的预测精度上具有优势, 以及在帕金森疾病数据中做出精准的疾病得分预测.
    优先出版日期:  2022-08-12 , DOI: 10.15888/j.cnki.csa.008835
    [摘要] (131) [HTML] (0) [PDF 2.38 M] (322)
    摘要:
    本文针对图像中小目标难以检测的问题, 提出了一种基于YOLOv5的改进模型. 在主干网络中, 加入CBAM注意力模块增强网络特征提取能力; 在颈部网络部分, 使用BiFPN结构替换PANet结构, 强化底层特征利用; 在检测头部分, 增加高分辨率检测头, 改善对于微小目标的检测能力. 本文算法在人脸瑕疵数据集和无人机数据集VisDrone2019两份数据集上均进行了多次对比实验, 结果表明本文算法可以有效地检测小目标.
    优先出版日期:  2022-07-29 , DOI: 10.15888/j.cnki.csa.008832
    [摘要] (119) [HTML] (0) [PDF 2.23 M] (164)
    摘要:
    在车载命名数据网络(VNDN)中, 兴趣包洪泛攻击(IFA)通过发送大量恶意兴趣包占用甚至耗尽网络资源, 导致合法用户的请求无法被满足, 严重危害了车联网的运行安全. 针对上述问题, 本文提出了一种基于流量监测的IFA检测方法. 首先构建基于RSU的分布式网络流量监测层, 每个RSU监测其通讯范围内的网络流量, RSU之间通信互联形成RSU网络流量监测层. 其次, 设定固定时间窗口, 对每个窗口内的网络流量通过信息熵、网络自相似性和奇异点3个维度进行分析. 其中, 为了利用信息熵反映兴趣包来源的分布, 在兴趣包中添加了新的字段. 最后, 综合上述3个指标, 判断兴趣包洪泛攻击的存在. 仿真实验结果表明, 本文提出的方法有效地提升了兴趣包洪泛攻击检测的准确率, 降低了误判率.
    优先出版日期:  2022-07-29 , DOI: 10.15888/j.cnki.csa.008833
    摘要:
    随着Android应用软件数量的急速增加, Android应用质量的重要性越来越受到人们的重视. 测试是高质量软件的重要保证, 而测试用例生成技术是自动化测试的关键. 数据显示, 在Google Play中有将近88%的Android应用程序使用了反射. 然而, 现有的Android测试用例自动生成方法通常没有考虑反射技术的使用, 无法检测出反射隐藏的恶意行为. 为了进一步提高软件质量, 本文提出一种新的Android测试用例生成方法, 结合反射特征构造Android应用程序多粒度模型, 同时对反射关系进行分析, 生成能到达反射的调用路径, 并利用自适应遗传算法生成覆盖反射路径的测试用例, 对含反射特征的Android应用进行测试. 为验证本文方法, 分别从Android应用多粒度模型有效性及测试方法效率两方面对本文方法有效性进行评估. 实验结果表明, 本文提出的基于反射特征的Android测试用例自动生成方法对于反射的检测效果更好并且效率更高.
    优先出版日期:  2022-07-29 , DOI: 10.15888/j.cnki.csa.008834
    [摘要] (106) [HTML] (0) [PDF 3.06 M] (193)
    摘要:
    为了实现对地质档案的信息化管理, 系统结合Gateway服务网关和Consul注册中心, 构建了一个基于Spring Boot微服务架构的地质档案信息系统. 研发过程使用前后端分离的开发模式, 通过Layui开发前台页面的主要部分, 并结合Spring Boot框架搭建后端微服务实例, 以关系型数据库MySQL及非关系型数据库Redis共同作为系统数据存储的载体, 建立了用户管理、档案入库、档案借阅归还、OCR图片识别等功能模块. 系统将地质档案进行电子化存储, 促进了资源共享、统一调用, 减少了人员的维护工作量, 提高了工作效率, 为地质档案信息数据融合提供了支撑.
    优先出版日期:  2022-07-28 , DOI: 10.15888/j.cnki.csa.008853
    摘要:
    针对传统数字图像水印版权保护中存在的鲁棒性差和安全性低的问题, 为提升不同图像零水印的可区分性, 提出了一种基于多特征和混沌加密的零水印算法. 首先根据整体与局部的角度提取图像的5维特征: 均值特征、方差特征、偏态特征、峰度特征和HOG特征; 然后利用新提出的基于混沌映射的块置乱方法加密水印图像; 最后基于提取的多特征与置乱后水印, 构造零水印信息. 在版权认证过程中, 首先提取多特征, 再结合零水印信息, 得到加密后水印; 最后对其进行解密; 即可实现版权认证. 实验结果表明, 所提出的方法效率高、安全性高、抗攻击能力强. 基于多特征和混沌加密零水印算法综合了数字图像的多方面性质作为特征, 稳定性高, 提高了算法鲁棒性; 同时采用新提出的基于混沌映射的块置乱方法提高了水印图像安全性, 有效地解决了图像水印鲁棒性差和安全性低的问题.
    优先出版日期:  2022-07-28 , DOI: 10.15888/j.cnki.csa.008854
    摘要:
    针对医疗整容领域中客户在术前无法直观感受术后整容效果的问题, 提出了面向医疗整容领域的三维人脸重建与编辑系统. 该系统首先对用户上传的图片进行特征点标记, 然后结合三维形变模型(3D morphable model, 3DMM)对输入图像进行对齐, 接着将处理后的图像输入预先训练好的三维人脸重建网络中, 便可得到输入图像所对应的三维人脸模型. 系统对此模型进行加载渲染后, 用户可以对模型的脸颊、鼻梁和下巴进行编辑以达到模拟整容的效果, 之后可对模型进行保存并查看诊断结果. 最后, 对重建效果、整形效果和诊断结果可靠性进行测试. 实验结果表明, 该系统对中青年人脸的重建效果好, 重建模型与输入图片相似度高; 对模型整形后的部位依然保持平滑自然, 达到了模拟整容的效果; 在给定正确的人脸尺寸后, 诊断结果给出的整形建议在毫米级范围内, 说明了整形结果具有较高的可靠性.
    优先出版日期:  2022-07-28 , DOI: 10.15888/j.cnki.csa.008855
    摘要:
    针对传统SURF的图像匹配算法存在计算数据复杂、耗时长、匹配正确率不佳等问题, 提出一种基于改进SURF的图像匹配算法. 首先, 用传统SURF算法来提取待匹配图像的特征点, 再通过圆形区域代替矩形区域将SURF的64维度描述符降到20维度; 采用KNN, 来双向匹配待匹配图像的特征点, 得到双向的初始特征点匹配对集; 最后, 通过RANSAC算法对初始匹配对集进行双向剔除错误的匹配对. 实验的结果表明, 本文算法减少了特征点检测时间, 提高了匹配正确率, 还有较好的鲁棒性.
    优先出版日期:  2022-07-28 , DOI: 10.15888/j.cnki.csa.008856
    摘要:
    地图匹配是将车辆原始的GPS轨迹数据映射到实际道路网络上的过程, 其中为GPS轨迹点检索候选路段是地图匹配的首要环节, 然而不同的候选路段检索方式会直接影响地图匹配的准确性和效率. 本文针对城市路网环境下的低频采样GPS轨迹数据, 提出了一种基于浮动网格的路段检索方法. 该方法利用GeoHash网格编码, 采用浮动GeoHash网格的方式, 为轨迹点检索候选路段. 其次为了验证方法的可行性, 本文通过隐马尔可夫模型, 结合道路网络的拓扑结构以及轨迹的时空约束条件, 采用增量的方式, 利用维特比算法计算得到局部最优解. 最后使用贪心策略, 从已经得到的局部最优解中依次延伸得到全局最佳匹配路径.
    优先出版日期:  2022-07-28 , DOI: 10.15888/j.cnki.csa.008859
    摘要:
    为了准确且实时地检测到交通标志指示牌, 减少交通事故的发生和推动智慧交通的发展, 针对现有的道路交通标志检测模型存在的精度不足、权重文件大、检测速度慢的问题, 设计了一种基于计算机视觉技术的改进YOLOv5s检测算法YOLOv5s-GC. 首先, 使用copy-paste进行数据增强后再送入网络进行训练, 加强对小目标的检测能力; 然后, 引入Ghost来构建网络, 削减原网络的参数和计算量, 实现轻量化模型; 最后, 将坐标注意力机制(coordinate attention)融合到骨干网络里, 增强对待测目标的表示和定位能力, 提高识别精度. 实验结果表明, YOLOv5s-GC模型相比于原YOLOv5s模型, 参数数目减少了12%, 检测速度提高了22%, 平均精度达到了94.2%, 易于部署且能满足实际自动驾驶场景中对识别交通标志的速度和准确度要求.
    优先出版日期:  2022-07-28 , DOI: 10.15888/j.cnki.csa.008860
    摘要:
    铁路事故的相关信息以事故概况文本的形式存在, 对于铁路安全工作有重要意义. 但由于缺乏有效的信息抽取手段, 导致分散在文本中的铁路事故知识没有得到充分的利用. 命名实体识别是信息抽取的重要子任务, 目前关于事故领域的命名实体识别问题研究较少. 针对铁路事故命名实体识别问题, 提出一种融合字位置特征的命名实体识别模型, 该模型通过全连接神经网络获取字的位置特征, 并与语义层面的字向量合并作为字的最终向量表示输入BiLSTM-CRF模型获取最优标签序列. 实验结果表明, 模型在铁路事故文本命名实体识别问题上的准确率、召回率和F1值分别为93.29%、94.77%和94.02%, 相比于传统模型, 取得了更好的效果, 为铁路事故知识图谱的构建奠定基础.
    优先出版日期:  2022-07-25 , DOI: 10.15888/j.cnki.csa.008828
    摘要:
    针对神经机器翻译和人工翻译性能的差异最小化、训练语料不足问题, 提出了一种基于生成对抗网络的神经机器翻译改进方法.首先对目标端句子序列添加微小的噪声干扰, 通过编码器还原原始句子形成新的序列;其次将编码器的处理结果交给判别器和解码器进一步处理, 在训练过程中, 判别器和双语评估基础值(BLEU)目标函数用于评估生成的句子, 并将结果反馈给生成器, 引导生成器学习及优化.实验结果表明, 对比传统的神经机器翻译模型, 基于GAN模型的方法极大地提高了模型的泛化能力和翻译的精度.
    优先出版日期:  2022-07-25 , DOI: 10.15888/j.cnki.csa.008829
    [摘要] (141) [HTML] (0) [PDF 2.45 M] (172)
    摘要:
    在过去半个多世纪中, 随着计算机技术的发展, 神经网络已经在图像、语音、决策等众多领域取得了广泛的应用. 不同学者为了提高神经网络的准确率设计了大量的网络结构, 神经网络也变得越来越复杂和多参数化. 这使得神经网络的训练过程具有很强的非凸性, 相同的网络不同的初始参数往往会训练出不同的模型. 为了更精准地描述两个网络的表现, 前人提出通过统计学方法—随机占优(stochastic dominance)评估不同随机种子对同一网络训练出的不同模型的表现的分布. 本文在此基础上认为, 不同模型在测试集中不同样本上的表现的分布同样值得关注, 并将随机占优方法应用到不同模型在不同样本表现分布的对比中. 通过对图像分割应用中的网络进行实验, 本文关注到不同网络训练出的两个模型其中一个尽管在表现分数上具有一定的优势, 但是其在测试集中不同样本中表现出的离散度可能更强. 实际应用需要表现分数更好同时离散度尽可能小的神经网络模型, 随机占优方法可以有效地对不同模型进行比较从而筛选出更适合的模型.
    优先出版日期:  2022-07-25 , DOI: 10.15888/j.cnki.csa.008826
    [摘要] (105) [HTML] (0) [PDF 1.13 M] (197)
    摘要:
    为了解决Hyperledger Fabric使用固定背书节点进行背书而引发的安全问题, 提出了一种基于可验证延迟函数的Hyperledger Fabric背书策略优化方案. 利用可验证延迟函数不可并行计算以及可高效验证的特点, 设计了匿名化、随机化选取背书节点的Fabric交易模型, 增强了Fabric交易背书的安全性. 通过实验对比优化方案与原始方案, 验证了优化方案在增强安全性的同时, 在效率上也有一定的提升.
    优先出版日期:  2022-07-25 , DOI: 10.15888/j.cnki.csa.008823
    摘要:
    针对属性值为区间直觉模糊数的多属性群决策问题, 考虑到模糊性和随机性对群决策过程及结果的影响, 本研究将利用云模型理论结合区间直觉模糊数的特征, 运用灰色关联系数法和信息熵理论确定专家和属性权重, 通过信息集结构建综合评价云模型. 不同于传统的区间直觉模糊数的排序方法, 本研究利用云模型的3En规则将区间直觉模糊数进行云转换并通过云相似度确定方案的综合评价值和犹豫度, 然后对决策方案进行比较分析. 研究结果表明: 该方法能够科学有效地进行决策, 进而为决策方提供科学依据.
    优先出版日期:  2022-07-25 , DOI: 10.15888/j.cnki.csa.008824
    [摘要] (111) [HTML] (0) [PDF 1.41 M] (180)
    摘要:
    针对传统图像分割方法分割效率低下, 遥感图像特征复杂多样, 复杂场景下分割性能受到限制等问题, 在基于U-Net网络架构的基础上, 提出一种能够较好提取遥感图像特征并兼顾效率的改进U-Net模型. 首先, 以EfficientNetV2作为U-Net的编码网络, 增强特征提取能力, 提高训练和推理效率, 然后在解码部分使用卷积结构重参数化方法并结合通道注意力机制, 几乎不增加推理时间的前提下提升网络性能, 最后结合多尺度卷积融合模块, 提高网络对不同尺度目标的特征提取能力和更好的结合上下文信息. 实验表明, 改进的网络在遥感图像分割性能提升的同时分割效率也提高.
    优先出版日期:  2022-07-22 , DOI: 10.15888/j.cnki.csa.008850
    [摘要] (124) [HTML] (0) [PDF 1.57 M] (189)
    摘要:
    带视觉系统的水下机器人作业离不开对水下目标准确的分割, 但水下环境复杂, 场景感知精度和识别精度不高等问题会严重影响目标分割算法的性能. 针对此问题本文提出了一种综合YOLOv5和FCN-DenseNet的多目标分割算法. 本算法以FCN-DenseNet算法为主要分割框架, YOLOv5算法为目标检测框架. 采用YOLOv5算法检测出每个种类目标所在位置; 然后输入针对不同类别的FCN-DenseNet语义分割网络, 实现多分支单目标语义分割, 最后融合分割结果实现多目标语义分割. 此外, 本文在Kaggle竞赛平台上的海底图片数据集上将所提算法与PSPNet算法和FCN-DenseNet算法两种经典的语义分割算法进行了实验对比. 结果表明本文所提的多目标图像语义分割算法与PSPNet算法相比, 在MIoUIoU指标上分别提高了14.9%和11.6%; 与FCN-DenseNet算法在MIoUIoU指标上分别提高了8%和7.7%, 更适合于水下图像分割.
    优先出版日期:  2022-07-22 , DOI: 10.15888/j.cnki.csa.008851
    摘要:
    针对工业生产中布匹瑕疵自动化检测模型训练时缺少带瑕疵位置信息的瑕疵布匹图像数据集的问题, 本文提出了一种以改进的部分卷积网络作为基本框架的带瑕疵位置信息的瑕疵布匹图像生成模型EC-PConv. 该模型引入小尺寸瑕疵特征提取网络, 将提取出的瑕疵纹理特征与空白mask拼接起来形成带有位置信息和瑕疵纹理特征的mask, 然后以修复方式生成带有瑕疵位置信息的瑕疵布匹图像, 另外, 本文提出一种结合MSE损失的混合损失函数以生成更加清晰的瑕疵纹理. 实验结果表明, 与最新的GAN生成模型相比, 本文提出的生成模型的FID值降低了0.51; 生成的瑕疵布匹图像在布匹瑕疵检测模型中查准率P和MAP值分别提高了0.118和0.106. 实验结果表明, 该方法在瑕疵布匹图像生成上比其他算法更稳定, 能够生成更高质量的带瑕疵位置信息的瑕疵布匹图像, 可较好地解决布匹瑕疵自动化检测模型缺少训练数据集的问题.
    优先出版日期:  2022-07-22 , DOI: 10.15888/j.cnki.csa.008852
    [摘要] (130) [HTML] (0) [PDF 1.35 M] (206)
    摘要:
    随着日新月异的高新技术不断发展, 物联网、大数据、人工智能交叉融合, 深度关联. 物联网全面融入了我们的生活、工作、社会发展等方方面面. 而物联网目前最广泛、最主流的协议当属MQTT协议, 低开销低带宽的先天优势促成了海量物联网设备接入网络. 但在万物互联时代大背景下, “自由可控, 安全可信”是行业发展的理念和标准. 目前很多研究者提出了从MQTT出发设计安全算法的方案, 但发现“基于MQTT的数据加密传输算法”该论文的核心算法存在密钥泄露的风险, 为此指出了其核心算法的缺陷并提出3种新的MQTT-SE算法. 分别是基于对称加密的MQTT-SE算法、基于公钥的MQTT-SE算法、基于公钥证书的双向认证MQTT-SE算法. 从而达到MQTT传输在低效能环境下的基础上达到高性能安全加密传输的目的.
    优先出版日期:  2022-07-15 , DOI: 10.15888/j.cnki.csa.008800
    [摘要] (151) [HTML] (0) [PDF 1.19 M] (186)
    摘要:
    针对Android恶意软件检测, 通常仅有检测结果缺乏对其检测结果的可解释性. 基于此, 从可解释性的角度分析Android恶意软件检测, 综合利用多层感知机和注意力机制提出一种可解释性的Android恶意软件检测方法(multilayer perceptron attention-method, MLP_At). 通过提取Android恶意软件的应用权限和应用程序接口(application programming interface, API)特征来进行数据预处理生成特征信息, 采用多层感知机对特征学习. 最后, 利用BP算法对学习到的数据进行分类识别. 在多层感知机中引入注意力机制, 以捕获敏感特征, 根据敏感特征生成描述来解释应用的核心恶意行为. 实验结果表明所提方法能有效检测恶意软件, 与SVM、RF、XGBoost相比准确率分别提高了3.65%、3.70%和2.93%, 并能准确地揭示软件的恶意行为. 此外, 该方法还可以解释样本被错误分类的原因.
    优先出版日期:  2022-07-14 , DOI: 10.15888/j.cnki.csa.008805
    摘要:
    行为识别是通过对视频数据进行处理分析从而让计算机理解人的动作和行为. 不同模态数据在外观、姿态、几何、光照和视角等主要特征上各有优势, 通过多模态融合将这些特征进行融合可以获得比单一模态数据更好的识别效果. 本文对现有行为识别多模态融合方法进行介绍, 对比了它们之间的特点以及获得的性能提升, 包括预测分数融合、注意力机制、知识蒸馏等晚期融合方法, 以及特征图融合、卷积、融合结构搜索、注意力机制等早期融合方法. 通过这些分析和比较归纳出未来多模态融合的研究方向.
    优先出版日期:  2022-07-14 , DOI: 10.15888/j.cnki.csa.008814
    摘要:
    Docker镜像是Docker容器运行的基础, 目前缺少完善的镜像安全检测方法, 导致容器运行时易受到容器逃逸、拒绝服务攻击等各种安全威胁. 为避免有毒镜像使用, 本文提出一种Docker可信镜像源检测模型DTDIS (detect trusted Docker image source), 该模型使用可信密码模块vTCM (virtual trusted cryptography module)构建镜像基准值数据库, 检测本地镜像文件是否被篡改; 使用父镜像漏洞数据库扩展Clair镜像扫描器避免重复扫描; 结合文件度量信息、漏洞扫描信息判别Docker镜像源是否可信. 经云环境下实验证明, 该模型能够有效对Docker镜像进行安全评估, 保证用户使用可信镜像.
    优先出版日期:  2022-07-14 , DOI: 10.15888/j.cnki.csa.008816
    摘要:
    网络舆情信息挖掘是舆情研究的重要课题. 在大量的信息面前, 为了快速发掘有用性高的舆情信息为舆情的分析、决策提供助力, 提出一种面向特定观点的舆情信息有用性排序方法, 实现快速发掘特定观点下有用舆情信息的目的. 该方法针对舆情信息的具体观点进行分析计算, 同时根据舆情信息可信度和关注度、传播者的影响力, 并且结合信息时效性等因素, 利用排序方法进行打分, 根据舆情信息的得分进行有用性排序. 实验结果表明, 该方法能很好的完成对舆情信息的推荐排序. 本研究理论上对舆情信息挖掘的研究理论进行补充, 现实意义对舆情管理者有很好的辅助作用, 能够为网络舆情引导工作提供助力.
    优先出版日期:  2022-07-14 , DOI: 10.15888/j.cnki.csa.008817
    [摘要] (103) [HTML] (0) [PDF 1.78 M] (175)
    摘要:
    训练基于深度学习的计算机辅助诊断系统可以有效地从肺部CT图像中检测出是否受到COVID-19感染, 但目前面临的主要问题是缺乏高质量带标注的CT图像用于训练. 为了有效的解决该问题, 本文提出了一种基于生成对抗网络来扩增肺部CT图像的方法. 新方法通过生成不同感染区域的标签并通过泊松融合以增加生成图像的多样性; 通过训练对抗网络模型实现图像的转换生成, 以达到扩增CT图像的目的. 为验证生成数据的有效性, 基于扩增数据进一步做了分割实验. 通过图像生成实验和分割实验, 结果都表明, 本文提出的图像生成方法取得了较好的效果.
    优先出版日期:  2022-03-31 , DOI: 10.15888/j.cnki.csa.008603
    [摘要] (138) [HTML] (8) [PDF 1.10 M] (5998)
    摘要:
    电力能源的安全在国家安全中占有重要的地位. 随着电力5G通信技术的发展, 大量电力终端产生定位需求. 传统GPS定位方法存在易受欺骗的问题, 如何有效提升GPS定位的安全性成为一个亟待研究的问题. 本文提出了一种基于基站辅助的电力5G终端GPS欺骗检测算法, 利用安全性较高的基站定位来检验可能被欺骗的GPS定位, 并且引入了一致性因数用来描述GPS定位结果和基站定位结果的一致性. 通过计算一致性因数, 如果大于设定的阈值则判断发生欺骗, 反之则GPS工作正常. 实验表明, 在使用本论文模型情况下, 本算法的准确率为99.98%, 优于传统机器学习分类算法. 此外, 本方法在运行速度上相较于传统机器学习分类算法也有一定程度的提升.
  • 全文下载排行(总排行年度排行各期排行)
    摘要点击排行(总排行年度排行各期排行)

  • 快速检索
    过刊检索
    全选反选导出
    显示模式:
    2000,9(2):38-41, DOI:
    [摘要] (11731) [HTML] (0) [PDF ] (18095)
    摘要:
    本文详细讨论了VRML技术与其他数据访问技术相结合 ,实现对数据库实时交互的技术实现方法 ,并简要阐述了相关技术规范的语法结构和技术要求。所用技术手段安全可靠 ,具有良好的实际应用表现 ,便于系统移植。
    1993,2(8):41-42, DOI:
    [摘要] (8607) [HTML] (0) [PDF ] (27928)
    摘要:
    本文介绍了作者近年来应用工具软件NU清除磁盘引导区和硬盘主引导区病毒、修复引导区损坏磁盘的 经验,经实践检验,简便有效。
    1995,4(5):2-5, DOI:
    [摘要] (8247) [HTML] (0) [PDF ] (10159)
    摘要:
    本文简要介绍了海关EDI自动化通关系统的定义概况及重要意义,对该EDI应用系统下的业务运作模式所涉及的法律问题,采用EDIFACT国际标准问题、网络与软件技术问题,以及工程管理问题进行了结合实际的分析。
    2011,20(11):80-85, DOI:
    [摘要] (6982) [HTML] () [PDF 863160] (36769)
    摘要:
    在研究了目前主流的视频转码方案基础上,提出了一种分布式转码系统。系统采用HDFS(HadoopDistributed File System)进行视频存储,利用MapReduce 思想和FFMPEG 进行分布式转码。详细讨论了视频分布式存储时的分段策略,以及分段大小对存取时间的影响。同时,定义了视频存储和转换的元数据格式。提出了基于MapReduce 编程框架的分布式转码方案,即Mapper 端进行转码和Reducer 端进行视频合并。实验数据显示了转码时间随视频分段大小和转码机器数量不同而变化的趋势。结
    2016,25(8):1-7, DOI: 10.15888/j.cnki.csa.005283
    [摘要] (6948) [HTML] () [PDF 1167952] (30639)
    摘要:
    从2006年开始,深度神经网络在图像/语音识别、自动驾驶等大数据处理和人工智能领域中都取得了巨大成功,其中无监督学习方法作为深度神经网络中的预训练方法为深度神经网络的成功起到了非常重要的作用. 为此,对深度学习中的无监督学习方法进行了介绍和分析,主要总结了两类常用的无监督学习方法,即确定型的自编码方法和基于概率型受限玻尔兹曼机的对比散度等学习方法,并介绍了这两类方法在深度学习系统中的应用,最后对无监督学习面临的问题和挑战进行了总结和展望.
    2008,17(5):122-126, DOI:
    [摘要] (6886) [HTML] (0) [PDF ] (41681)
    摘要:
    随着Internet的迅速发展,网络资源越来越丰富,人们如何从网络上抽取信息也变得至关重要,尤其是占网络资源80%的Deep Web信息检索更是人们应该倍加关注的难点问题。为了更好的研究Deep Web爬虫技术,本文对有关Deep Web爬虫的内容进行了全面、详细地介绍。首先对Deep Web爬虫的定义及研究目标进行了阐述,接着介绍了近年来国内外关于Deep Web爬虫的研究进展,并对其加以分析。在此基础上展望了Deep Web爬虫的研究趋势,为下一步的研究奠定了基础。
    1999,8(7):43-46, DOI:
    [摘要] (6414) [HTML] (0) [PDF ] (19586)
    摘要:
    用较少的颜色来表示较大的色彩空间一直是人们研究的课题,本文详细讨论了半色调技术和抖动技术,并将它们扩展到实用的真彩色空间来讨论,并给出了实现的算法。
    2007,16(9):22-25, DOI:
    [摘要] (6015) [HTML] (0) [PDF ] (3435)
    摘要:
    本文结合物流遗留系统的实际安全状态,分析了面向对象的编程思想在横切关注点和核心关注点处理上的不足,指出面向方面的编程思想解决方案对系统进行分离关注点处理的优势,并对面向方面的编程的一种具体实现AspectJ进行分析,提出了一种依据AspectJ对遗留物流系统进行IC卡安全进化的方法.
    2011,20(7):184-187,120, DOI:
    [摘要] (5475) [HTML] () [PDF 731903] (26543)
    摘要:
    针对智能家居、环境监测等的实际要求,设计了一种远距离通讯的无线传感器节点。该系统采用集射频与控制器于一体的第二代片上系统CC2530 为核心模块,外接CC2591 射频前端功放模块;软件上基于ZigBee2006 协议栈,在ZStack 通用模块基础上实现应用层各项功能。介绍了基于ZigBee 协议构建无线数据采集网络,给出了传感器节点、协调器节点的硬件设计原理图及软件流程图。实验证明节点性能良好、通讯可靠,通讯距离较TI 第一代产品有明显增大。
    2012,21(3):260-264, DOI:
    [摘要] (5409) [HTML] () [PDF 336300] (39524)
    摘要:
    开放平台的核心问题是用户验证和授权问题,OAuth 是目前国际通用的授权方式,它的特点是不需要用户在第三方应用输入用户名及密码,就可以申请访问该用户的受保护资源。OAuth 最新版本是OAuth2.0,其认证与授权的流程更简单、更安全。研究了OAuth2.0 的工作原理,分析了刷新访问令牌的工作流程,并给出了OAuth2.0 服务器端的设计方案和具体的应用实例。
    2004,13(10):7-9, DOI:
    [摘要] (5336) [HTML] (0) [PDF ] (7817)
    摘要:
    本文介绍了车辆监控系统的组成,研究了如何应用Rockwell GPS OEM板和WISMOQUIKQ2406B模块进行移动单元的软硬件设计,以及监控中心 GIS软件的设计.重点介绍嵌入TCP/IP协议处理的Q2406B模块如何通过AT指令接入Internet以及如何和监控中心传输TCP数据.
    2008,17(1):113-116, DOI:
    [摘要] (5239) [HTML] (0) [PDF ] (44600)
    摘要:
    排序是计算机程序设计中一种重要操作,本文论述了C语言中快速排序算法的改进,即快速排序与直接插入排序算法相结合的实现过程。在C语言程序设计中,实现大量的内部排序应用时,所寻求的目的就是找到一个简单、有效、快捷的算法。本文着重阐述快速排序的改进与提高过程,从基本的性能特征到基本的算法改进,通过不断的分析,实验,最后得出最佳的改进算法。
    2008,17(8):87-89, DOI:
    [摘要] (5198) [HTML] (0) [PDF ] (36758)
    摘要:
    随着面向对象软件开发技术的广泛应用和软件测试自动化的要求,基于模型的软件测试逐渐得到了软件开发人员和软件测试人员的认可和接受。基于模型的软件测试是软件编码阶段的主要测试方法之一,具有测试效率高、排除逻辑复杂故障测试效果好等特点。但是误报、漏报和故障机理有待进一步研究。对主要的测试模型进行了分析和分类,同时,对故障密度等参数进行了初步的分析;最后,提出了一种基于模型的软件测试流程。
    2008,17(8):2-5, DOI:
    [摘要] (5195) [HTML] (0) [PDF ] (27957)
    摘要:
    本文介绍了一个企业信息门户中单点登录系统的设计与实现。系统实现了一个基于Java EE架构的结合凭证加密和Web Services的单点登录系统,对门户用户进行统一认证和访问控制。论文详细阐述了该系统的总体结构、设计思想、工作原理和具体实现方案,目前系统已在部分省市的广电行业信息门户平台中得到了良好的应用。
    2004,13(8):58-59, DOI:
    [摘要] (5112) [HTML] (0) [PDF ] (24108)
    摘要:
    本文介绍了Visual C++6.0在对话框的多个文本框之间,通过回车键转移焦点的几种方法,并提出了一个改进方法.
    2010,19(10):42-46, DOI:
    [摘要] (5064) [HTML] () [PDF 1301305] (18009)
    摘要:
    综合考虑基于构件组装技术的虚拟实验室的系统需求,分析了工作流驱动的动态虚拟实验室的业务处理模型,介绍了轻量级J2EE框架(SSH)与工作流系统(Shark和JaWE)的集成模型,提出了一种轻量级J2EE框架下工作流驱动的动态虚拟实验室的设计和实现方法,给出了虚拟实验项目的实现机制、数据流和控制流的管理方法,以及实验流程的动态组装方法,最后,以应用实例说明了本文方法的有效性。
    2009,18(3):164-167, DOI:
    [摘要] (5062) [HTML] (0) [PDF ] (23511)
    摘要:
    介绍了一种基于DWGDirectX在不依赖于AutoCAD平台的情况下实现DWG文件的显示、操作、添加的简单的实体的方法,并对该方法进行了分析和实现。
    2009,18(5):182-185, DOI:
    [摘要] (5009) [HTML] (0) [PDF ] (27661)
    摘要:
    DICOM 是医学图像存储和传输的国际标准,DCMTK 是免费开源的针对DICOM 标准的开发包。解读DICOM 文件格式并解决DICOM 医学图像显示问题是医学图像处理的基础,对医学影像技术的研究具有重要意义。解读了DICOM 文件格式并介绍了调窗处理的原理,利用VC++和DCMTK 实现医学图像显示和调窗功能。
    2003,12(1):62-65, DOI:
    [摘要] (4900) [HTML] (0) [PDF ] (12122)
    摘要:
    本文介绍了一种将DTD转换成ER图,并用XMLApplication将ER图描述成转换标准,然后根据该转换标准将XML文档转换为关系模型的方法.
  • 全文下载排行(总排行年度排行各期排行)
    摘要点击排行(总排行年度排行各期排行)

  • 快速检索
    过刊检索
    全选反选导出
    显示模式:
    2007,16(10):48-51, DOI:
    [摘要] (4239) [HTML] (0) [PDF 0.00 Byte] (84057)
    摘要:
    论文对HDF数据格式和函数库进行研究,重点以栅格图像为例,详细论述如何利用VC++.net和VC#.net对光栅数据进行读取与处理,然后根据所得到的象素矩阵用描点法显示图像.论文是以国家气象中心开发Micaps3.0(气象信息综合分析处理系统)的课题研究为背景的.
    2002,11(12):67-68, DOI:
    [摘要] (2852) [HTML] (0) [PDF 0.00 Byte] (55617)
    摘要:
    本文介绍非实时操作系统Windows 2000下,利用VisualC++6.0开发实时数据采集的方法.所用到的数据采集卡是研华的PCL-818L.借助数据采集卡PCL-818L的DLLs中的API函数,提出三种实现高速实时数据采集的方法及优缺点.
    2008,17(1):113-116, DOI:
    [摘要] (5239) [HTML] (0) [PDF 0.00 Byte] (44600)
    摘要:
    排序是计算机程序设计中一种重要操作,本文论述了C语言中快速排序算法的改进,即快速排序与直接插入排序算法相结合的实现过程。在C语言程序设计中,实现大量的内部排序应用时,所寻求的目的就是找到一个简单、有效、快捷的算法。本文着重阐述快速排序的改进与提高过程,从基本的性能特征到基本的算法改进,通过不断的分析,实验,最后得出最佳的改进算法。
    2008,17(5):122-126, DOI:
    [摘要] (6886) [HTML] (0) [PDF 0.00 Byte] (41681)
    摘要:
    随着Internet的迅速发展,网络资源越来越丰富,人们如何从网络上抽取信息也变得至关重要,尤其是占网络资源80%的Deep Web信息检索更是人们应该倍加关注的难点问题。为了更好的研究Deep Web爬虫技术,本文对有关Deep Web爬虫的内容进行了全面、详细地介绍。首先对Deep Web爬虫的定义及研究目标进行了阐述,接着介绍了近年来国内外关于Deep Web爬虫的研究进展,并对其加以分析。在此基础上展望了Deep Web爬虫的研究趋势,为下一步的研究奠定了基础。
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号