• 当期目录
  • 优先出版
  • 过刊浏览
  • 点击排行
  • 下载排行
  • 综述文章
    快速检索
    过刊检索
    全选反选导出
    显示模式:
    2024,33(2):1-12, DOI: 10.15888/j.cnki.csa.009402
    [摘要] (191) [HTML] (215) [PDF 7.43 M] (293)
    摘要:
    现有的图像去模糊方法通常直接采用图像的空间域或频率域信息恢复清晰图像, 忽略了空间域信息和频率域信息的互补性. 利用图像的空间域信息可以有效地恢复物体结构, 而利用图像的频率域信息可以有效地恢复纹理细节. 本文提出了一种简单、有效的图像去模糊框架, 可以充分利用图像的空间域和频率域信息, 产生高质量的清晰图像. 首先采用两个结构相同但独立的网络分别从图像的空间域和频率域中学习模糊图像到清晰图像的映射关系; 然后使用一个单独的融合网络, 充分融合空间域和频率域的图像信息, 进一步提升清晰图像的质量. 3个网络链接形成一个端到端的、可学习的大网络, 不同网络之间相互影响, 通过联合优化最终得到高质量的清晰图像. 在公共图像去模糊数据集GoPro、Kohler以及RWBI上, 本文方法的峰值信噪比、结构相似度、平均绝对误差3个指标都优于9个先进的图像去模糊方法. 大量的实验结果验证了本文提出的融合空间域和频率域信息的图像去模糊方法的有效性.
    2024,33(2):13-22, DOI: 10.15888/j.cnki.csa.009388
    [摘要] (154) [HTML] (137) [PDF 1.91 M] (269)
    摘要:
    近年来, 基于生成对抗网络的高光谱图像分类方法取得了很大进展. 它们虽可以缓解训练样本数量有限的问题, 但是容易受到训练数据不平衡的影响, 并且存在模式崩溃问题. 针对这些问题, 提出了一种用于高光谱图像分类的SPCA-AD-WGAN模型. 首先, 为了解决训练数据不平衡导致分类精度降低的问题, 添加了单独的分类器, 与判别器分开训练. 其次, 将Wasserstein距离引入网络, 以缓解GAN模型崩溃的问题; 在两个HSI数据集上的实验结果表明, SPCA-AD-WGAN具有更好的分类性能.
    2024,33(2):23-32, DOI: 10.15888/j.cnki.csa.009390
    [摘要] (122) [HTML] (139) [PDF 1.46 M] (277)
    摘要:
    基于会话的推荐旨在根据匿名用户的短期交互数据来预测用户下一次交互项目. 现有图神经网络会话推荐模型大多在信息传播过程中平等对待所有邻居节点, 而没有区分他们对于中心节点的重要性, 从而给模型训练引入噪声. 此外, 随着图神经网络层数的增加, 过度平滑问题会随之产生. 针对上述问题, 本文提出结合跳跃连接的多层图注意力网络会话推荐模型(MGATSC). 首先利用图注意力网络学习邻居节点对于中心节点的重要性, 并堆叠多层网络以获取高阶邻居信息; 然后为了缓解过度平滑问题, 采用基于残差注意力机制的跳跃连接更新每层网络的节点嵌入, 并通过平均池化得到最终节点嵌入. 最后将反向位置嵌入融合到节点嵌入中, 经过预测层生成推荐. 在Tmall、Diginetica以及Retailrocket这3个公开数据集上的实验结果表明所提模型优于所有基线模型, 验证了模型的有效性与合理性.
    2024,33(2):33-42, DOI: 10.15888/j.cnki.csa.009391
    [摘要] (102) [HTML] (132) [PDF 2.90 M] (235)
    摘要:
    针对传统的反演方法过于其依赖初始模型, 导致结果不稳定与计算效率低的问题, 提出一种融合独立循环神经网络和粒子群优化算法的随钻测井实时反演方法. 首先, 通过地层模型正演模拟产生的序列数据, 建立独立循环神经网络模型, 并引入注意力机制强调关键特征在随钻测井反演中的作用; 其次, 在粒子群优化算法中引入随机惯性权重提高粒子群算法的全局和局部搜索能力, 利用粒子群优化算法对神经网络模型进行超参数优化; 最后, 在正演模拟测试集与某油田19312132 m段的测井数据测试集上分别进行消融实验与对比实验, 结果证明, 粒子群算法与注意力机制可以有效提高预测精度, 且该方法在各个方面的反演性能均优于长短期记忆神经网络、双向长短期记忆神经网络以及门控循环单元网络模型, 满足随钻测井数据实时反演的需要.
    2024,33(2):43-53, DOI: 10.15888/j.cnki.csa.009389
    [摘要] (102) [HTML] (135) [PDF 2.19 M] (273)
    摘要:
    随着计算机网络和无线通信等技术的发展, 有关视频媒体文件的版权保护和信息安全问题日益成为人们关注的焦点, 对视频媒体文件加密是一种有效保护信息安全的方式, 传统的视频文件加密方法需要对视频媒体文件中所有的视频帧数据进行加密, 文件加密的效率较低, 加密过程比较耗时. 本文针对H.264/AVC视频帧的结构特点, 提出了一种基于国产SM2算法的视频媒体文件加密效率提升的方法, 该方法在加密视频媒体文件的过程中只加密视频数据中关键帧的NALU Header信息, 在检测到H.264分片的情况下同时也需要对non-IDR Header信息进行加密. 实验结果表明该方法可以在有效加密视频媒体文件的同时减少了加密所需的时间, 明显提升了视频媒体文件的加密效率.
    2024,33(2):54-61, DOI: 10.15888/j.cnki.csa.009396
    摘要:
    标签噪声广泛存在、无法避免且影响深度网络模型的性能. 利用神经网络的“记忆效应”, 基于小损失原则的样本选择方法能简单有效地处理标签噪声. 本文基于特征空间中样本距离越近越相似的原则, 结合样本的高低置信度假设, 提出了新的样本选择原则以及二阶段加权样本选择重标签方法(WSSR-2s). (1)在训练前期阶段, 对于高置信度样本, 在特征空间中对其票权进行加权, 更好地引导训练; (2)在训练中后期阶段, 对于低置信度样本, 将其票权转移给其最相似的特征样本, 以更正确地训练. 在合成噪声数据集CIFAR-10、CIFAR-100以及真实噪声数据集ANIMAL-10N、WebVision的实验结果表明, 本文提出的方法取得更高的精度, 能够更好地处理标签噪声问题.
    快速检索
    过刊检索
    全选反选导出
    显示模式:
    优先出版日期:  2024-03-01 , DOI: 10.15888/j.cnki.csa.009456
    摘要:
    针对现有的图像修复方法在面对大规模图像缺损和不规则破损区域修复时, 修复结果出现生成结构与原图像语义不符以及纹理细节模糊等问题, 本文提出一种利用生成边缘图的多尺度特征融合图像修复算法——MSFGAN (multi-scale feature network model based on edge condition). 模型采用两阶段网络设计, 使用边缘图作为修复条件对修复结果进行结构约束. 首先, 使用Canny算子提取待修复图像的边缘图进行完整边缘图生成; 然后利用完整的边缘图结合待修复图像进行图像修复. 为了弥补图像修复算法中经常出现的问题, 提出一种融入了注意力机制的多尺度特征融合模块(attention mechanism multi-fusion convolution block, AM block), 实现受损图像的特征提取和特征融合. 在图像修复网络解码器部分引入跳跃链接, 将高级语义提取和底层特征进行融合实现高质量细节纹理修复. 在CelebA和Places2数据集上的测试结果显示, MSFGAN 修复质量上比当前修复方法有一定提升, 其中在20%–30%掩码比例中, SSIM平均提升1.535, PSNR提升0.0791 dB, 使用消融实验验证了当前优化和创新点在图像修复任务中的有效性.
    优先出版日期:  2024-03-01 , DOI: 10.15888/j.cnki.csa.009472
    摘要:
    目前, 区块链在供应链领域中的应用越来越受到业界的广泛关注. 但由于供应链中存在大量复杂性的事务, 这给可信的主节点选取工作带来了挑战. 因此, 在机器学习分类算法与PBFT (practical Byzantine fault tolerance)共识算法的基础上, 提出一种应用于供应链的区块链PBFT共识算法优化方法. 对构建供应链与区块链的集成框架进行分析, 根据供应链中参与共识的节点属性特征, 运用K-近邻(K-nearest neighbors)来优化PBFT共识算法的主节点选取规则. 实验结果表明, 对共识节点进行信任评估分类可以较好地解决因视图切换所引发的效率问题, 从而提升区块链的吞吐量、时延、容错性等共识性能, 具有一定的实用性, 也给区块链在其他行业的应用提供了思路.
    优先出版日期:  2024-03-01 , DOI: 10.15888/j.cnki.csa.009474
    摘要:
    基于深度学习的人群密度检测算法取得了巨大进步, 但该算法在实际复杂场景中的检测准确性和鲁棒性还有很大的提升空间. 复杂场景下目标尺度不一致和背景信息干扰等因素使得人群密度检测成为一项具有挑战性的任务. 针对该问题, 提出了一种基于多尺度特征融合的人群密度检测网络. 该网络首先利用不同分辨率图像并行交互提取人群粗细粒度特征, 并引入多层次特征融合机制, 以充分利用多层尺度信息. 其次采用空间和通道注意力机制突出人群特征权重, 聚焦感兴趣的人群, 降低背景信息干扰, 生成高质量密度图. 实验结果表明, 在多个典型的公共数据集上与具有代表性的人群密度检测方法相比, 多尺度特征融合的人群密度检测网络具有良好的准确性和鲁棒性.
    优先出版日期:  2024-03-01 , DOI: 10.15888/j.cnki.csa.009475
    摘要:
    近年来, 非结构化道路分割已成为计算机视觉领域的重要研究方向之一. 现有的大多数方法适合结构化道路的分割并无法满足非结构化道路分割的准确性与实时性需求. 为了解决上述问题, 本文对STDC网络进行改进, 引入残差连接来更好地融合多尺度语义信息, 还提出一种嵌入位置注意力模块的空洞空间卷积池化金字塔(PA-ASPP)来增强网络对道路等特定区域的位置感知能力. 本文在RUGD与RELLIS-3D两个数据集上进行实验, 所提出方法的MIoU在两个数据集的测试集上分别达到了50.78%和49.96%.
    优先出版日期:  2024-03-01 , DOI: 10.15888/j.cnki.csa.009477
    摘要:
    水声信号识别近年来备受关注, 由于海洋信道具有时变空变性、信号传播的衰落特性和水下目标声源具有复杂多变性, 水声信号识别任务面临巨大挑战. 传统的水声信号识别方法难以充分获取目标的表征信息且不具备良好的抗噪声能力, 识别效果有待提升. 针对上述问题, 本文提出一种基于多分支外部注意力网络(multi-branch external attention network, MEANet)的水声信号识别方法, 可以在复杂海洋环境下充分获取水声信号的特征并进行识别. MEANet由多分支主干网络, 通道、空间注意力模块和外部注意力模块组成. 首先, 输入数据通过多个并行的主干网络分支, 提取水声信号不同层级的特征信息; 其次, 辅以通道、空间注意力模块对水声信号的通道和空间维度分别进行加权, 调节不同通道和空间位置对特征表示的重要性; 最后, 整合外部注意力模块, 以外部记忆单元和附加计算来引导网络的特征提取和预测, 从而显著提高模型的识别率和鲁棒性. 实验结果表明, 本文提出的MEANet在ShipsEar数据集上的水声信号识别率达到98.84%, 显著优于其他对比算法, 证实了其有效性.
    优先出版日期:  2024-03-01 , DOI: 10.15888/j.cnki.csa.009478
    摘要:
    在边缘服务器资源受限的情况下, 如何设计合理的资源管理和任务调度方案是一项重要的研究内容. 为提升系统服务效用, 提出一种联合资源分配和计算卸载的设计方案. 首先, 借助二分搜索法和拉格朗日乘子法得到通信和计算资源的最佳匹配. 然后, 基于融合多种策略的鲸鱼优化算法来求解卸载决策, 其中包括调整收敛因子为指数幂级的非线性变化策略, 平衡探索和利用阶段的自适应权重策略, 三角形和Levy飞行的游走策略, 同时在适应度评价中引入罚函数来达到用户接入数量的约束限制, 最后利用V型传递函数制定二进制卸载策略. 仿真结果表明, 在与其他基准方案的多项指标评估中, 所提方案能有效增加网络吞吐量, 显著提高系统效用.
    优先出版日期:  2024-03-01 , DOI: 10.15888/j.cnki.csa.009479
    摘要:
    现有的场景文本识别器容易受到模糊文本图像的困扰, 导致在实际应用中性能较差. 因此近年来研究人员提出了多种场景文本图像超分辨率模型作为场景文本识别的预处理器, 以提高输入图像的质量. 然而, 用于场景文本图像超分辨率任务的真实世界训练样本很难收集; 此外, 现有的场景文本图像超分辨率模型只学习将低分辨率(LR)文本图像转换为高分辨率(HR)文本图像, 而忽略了从HR到LR图像的模糊模式. 本文提出了模糊模式感知模块, 该模块从现有的真实世界HR-LR文本图像对中学习模糊模式, 并将其转移到其他HR图像中, 以生成具有不同退化程度的LR图像. 本文所提出的模糊模式感知模块可以为场景文本图像超分辨率模型生成大量的HR-LR图像对, 以弥补训练数据的不足, 从而显著提高性能. 实验结果表明, 当配备提出的模糊模式感知模块时, 场景文本图像超分辨率方法的性能可以进一步提高, 例如, SOTA方法TG在使用CRNN文本识别器进行评估时, 识别准确率提高了5.8%.
    优先出版日期:  2024-03-01 , DOI: 10.15888/j.cnki.csa.009486
    摘要:
    视障人士是社会中的弱势群体, 独立出行面临重重障碍. 为视障人士提供安全可靠的辅助设备体现了社会文明的进步. 介绍了辅助视障出行有关的障碍物检测识别关键技术和路径规划相关算法. 重点对障碍物检测之后的路径规划算法进行分析, 综合对比各种技术的应用特点及场景并讨论了相关方法在视障辅助设备中的研究进展. 总结了多技术融合使用在智能辅助设备中的应用现状. 在此基础上, 结合人工智能及嵌入式设备等技术的进步展望了未来辅助视障出行设备的发展方向.
    优先出版日期:  2024-01-30 , DOI: 10.15888/j.cnki.csa.009457
    摘要:
    可控文本摘要模型可以生成符合用户偏好的摘要. 之前的摘要模型侧重于单独控制某个属性, 而不是多个属性的组合. 传统的Seq2Seq多属性可控文本摘要模型在满足多个控制属性时, 存在无法整合所有控制属性、无法准确再现文本中关键信息和无法处理单词表外单词等问题. 为此, 本文提出了一种基于扩展Transformer和指针生成网络(pointer generator network, PGN)的模型. 模型中的扩展Transformer将Transformer单编码器-单解码器的模型形式扩展成具有双重文本语义信息提取的双编码器和单个可融合指导信号特征的解码器形式. 然后利用指针生成网络模型选择从源文本中复制单词或利用词汇表生成新的摘要信息, 以解决摘要任务中常出现的OOV (out of vocabulary)问题. 此外, 为高效完成位置信息编码, 模型在注意力层中使用相对位置表示来引入文本的序列信息. 模型可以用于控制摘要的许多重要属性, 包括长度、主题和具体性等. 通过在公开数据集MACSum上的实验表明, 相较以往方法, 本文提出的模型在确保摘要质量的同时, 更加符合用户给定的属性要求.
    优先出版日期:  2024-01-30 , DOI: 10.15888/j.cnki.csa.009452
    摘要:
    本文提出了一种多层次海洋生物分类方法. 海洋生物种类繁多, 且同门类生物具有较强的类间相似性, 而不同门类生物具有较大许差异. 我们利用物种间的相似性, 帮助网络学习生物先验知识, 设计出了一种多层次分类方法. 设计了C-MBConv模块, 并结合多层次分类方法改进了EfficientNetV2网络架构, 改进后的网络架构称为CM-EfficientNetV2. 我们的实验表明CM-EfficientNetV2比原网络EfficientNetV2有着更高的准确率, 在南麂列岛潮间带海洋生物数据集上准确率提高了1.5%, 在CIFAR-100上准确率提高了2%.
    优先出版日期:  2024-01-30 , DOI: 10.15888/j.cnki.csa.009455
    摘要:
    随着物联网的发展, 高效的共识算法是区块链技术应用于物联网的关键. 针对实用拜占庭容错 (practical Byzantine fault tolerance, PBFT)算法在物联网场景中通信次数多、未考虑共识功耗、共识时延高等问题, 本文提出了一种基于二分K均值算法的改进PBFT共识算法(binary K-means practical Byzantine fault tolerance algorithm, BK-PBFT). 首先, 获取节点地理坐标并计算节点综合评价值, 通过二分K均值算法将节点划分为一个双层多中心聚类集群. 然后, 先在下层集群再在上层集群对区块进行PBFT共识. 最后, 集群验证执行并存储区块, 完成共识. 此外, 本文证明了当结点均匀分布在每个簇时算法通信次数可以达到最少, 以及通信次数最少时的最优聚类数. 分析与仿真结果表明, 本文算法可以有效减少通信次数、降低共识功耗和共识时延.
    优先出版日期:  2024-01-30 , DOI: 10.15888/j.cnki.csa.009460
    摘要:
    针对神经网络难以利用少量标注数据获取足够的信息来正确分类图像的问题, 提出了一种融合随机深度网络和多尺度卷积的关系网络——SDM-RNET. 首先在模型嵌入模块引入随机深度网络用于加深模型深度, 然后在特征提取阶段采用多尺度深度可分离卷积替代普通卷积进行特征融合, 经过骨干网络后再采用深浅层特征融合获取更丰富的图像特征, 最终学习预测出图像的类别. 在mini-ImageNet、RP2K、Omniglot这3个数据集上对比该方法与其他小样本图像分类方法, 结果表明在5-way 1-shot和5-way 5-shot分类任务上该方法准确率最高.
    优先出版日期:  2024-01-30 , DOI: 10.15888/j.cnki.csa.009461
    摘要:
    多模态情感分析旨在通过用户上传在社交平台上的视频来判断用户的情感. 目前的多模态情感分析研究主要是设计复杂的多模态融合网络来学习模态之间的一致性信息, 在一定程度上能够提升模型的性能, 但它们大部分都忽略了模态之间的差异性信息所起到的互补作用, 从而导致情感分析出现偏差. 本文提出了一个基于双编码器表示学习的多模态情感分析模型DERL (dual encoder representation learning), 该模型通过双编码器结构学习模态不变表征和模态特定表征. 具体来说, 我们利用基于层级注意力机制的跨模态交互编码器学习所有模态的模态不变表征, 获取一致性信息; 利用基于自注意力机制的模态内编码器学习模态私有的模态特定表征, 获取差异性信息. 此外, 我们设计两个门控网络单元对编码后的特征进行增强和过滤, 以更好的结合模态不变和模态特定表征, 最后在融合时通过缩小不同多模态表示之间的L2距离以捕获它们之间潜在的相似情感用于情感预测. 在两个公开的数据集CMU-MOSI和CMU-MOSEI上的实验结果表明该模型优于一系列基线模型.
    优先出版日期:  2024-01-30 , DOI: 10.15888/j.cnki.csa.009464
    摘要:
    密文策略属性基加密(ciphertext-policy attribute-based encryption, CP-ABE)技术可以在保证数据隐私性的同时提供细粒度访问控制. 针对现有的基于CP-ABE的访问控制方案不能有效解决边缘计算环境中的关键数据安全问题, 提出一种边缘计算环境中基于区块链的轻量级密文访问控制方案(blockchain-based lightweight access control scheme over ciphertext in edge computing, BLAC). 在BLAC中, 设计了一种基于椭圆曲线密码的轻量级CP-ABE算法, 使用快速的椭圆曲线标量乘法实现算法加解密功能, 并将大部分加解密操作安全地转移, 使得计算能力受限的用户设备在边缘服务器的协助下能够高效地完成密文数据的细粒度访问控制; 同时, 设计了一种基于区块链的分布式密钥管理方法, 通过区块链使得多个边缘服务器能够协同地为用户分发私钥. 安全性分析和性能评估表明BLAC能够保障数据机密性, 抵抗共谋攻击, 支持前向安全性, 具有较高的用户端计算效率, 以及较低的服务器端解密开销和存储开销.
    优先出版日期:  2024-01-30 , DOI: 10.15888/j.cnki.csa.009466
    摘要:
    肝癌是一种恶性肝肿瘤, 起源于肝细胞. 肝癌诊断一直是医学难点问题, 也是各领域研究的热点问题, 早期确诊肝癌可以降低肝癌的死亡率. 组织病理学图像检查是肿瘤学诊断的黄金标准, 图像会显示组织切片的细胞和组织结构, 可以用于确定细胞类型、组织结构、异常细胞的数量和形态, 并评估肿瘤具体情况. 本文重点研究了卷积神经网络针对病理图像的肝癌诊断算法, 包括肝肿瘤检测、图像分割以及术前预测这3个方面的应用, 详细阐述了卷积神经网络各算法的设计思路和相关改进目的及方法, 以便为研究人员提供更清晰的参考思路. 总结性分析了卷积神经网络算法在诊断中的优缺点, 并对未来可能的研究热点和相关难点进行了探讨.
    优先出版日期:  2024-01-30 , DOI: 10.15888/j.cnki.csa.009467
    摘要:
    针对目前三维人体姿态由于遮挡、姿态复杂等预测不准确的问题, 提出了一种改进的三维人体姿态估计算法以获得准确的三维人体姿态, 提高人体姿态估计性能. 本文采用时空图注意力卷积网络中的图注意力块来构建整个网络, 在此基础上对全局多头图注意力部分的网络结构进行改进, 使节点间更好传播和融合信息, 捕获图中没有显式表示的语义信息. 同时引入运动学约束, 在MPJPE损失的基础上, 加上骨骼长度损失. 通过对局部和全局的空间节点信息建模, 实现对局部运动学连接、对称性和全局姿态的人体骨骼运动学约束的学习. 通过实验证明, 本文改进后的模型有效地提高了人体姿态估计性能, 在Human3.6M数据集上相较于原始模型, 实现了1.8%的平均关节位置误差(MPJPE)提升和1.3%的预测关节与真值关节刚性对齐后的平均关节位置误差(P-MPJPE)提升.
    优先出版日期:  2024-01-30 , DOI: 10.15888/j.cnki.csa.009471
    摘要:
    当前无人机图像中存在小目标数量众多、背景复杂的特点, 目标检测中易造成漏检误检率较高的问题, 针对这些问题, 提出一种高阶深度可分离无人机图像小目标检测算法. 首先, 结合CSPNet结构与ConvMixer网络, 深度可分离卷积核, 获取梯度结合信息, 并引入递归门控卷积C3模块, 提升模型的高阶空间交互能力, 增强网络对小目标的敏感度; 其次, 检测头采用两个头部进行解耦, 分别输出特征图分类和位置信息, 加快模型收敛速度; 最后, 使用边框损失函数EIoU, 提高检测框精准度. 在VisDrone2019数据集上的实验结果表明, 该模型检测精度达到了35.1%, 模型漏检率和误检率有明显下降, 能够有效地应用于无人机图像小目标检测任务. 在DOTA 1.0数据集和HRSID数据集上进行模型泛化能力测试, 实验结果表明, 该模型具有良好的鲁棒性.
    优先出版日期:  2024-01-30 , DOI: 10.15888/j.cnki.csa.009451
    摘要:
    交通流预测是智能交通系统中实现城市交通优化的一种重要方法, 准确的交通流量预测对交通管理和诱导具有重要意义. 然而, 因交通流本身存在高度时空依赖性而表现出复杂的非线性特征, 现有的方法主要考虑路网中节点的局部时空特征, 忽略了路网中所有节点的长期时空特征. 为了充分挖掘交通流数据复杂的时空依赖, 提出一种融合多种时空自注意力机制的Transformer交通流预测模型(MSTTF). 该模型在嵌入层通过位置编码嵌入时间和空间信息, 并在注意力机制层融合邻接空间自注意力机制, 相似空间自注意力机制, 时间自注意力机制, 时间-空间自注意力机制等多种自注意力机制挖掘数据中潜在的时空依赖关系, 最后在输出层进行预测. 结果表明, MSTTF模型与传统时空Transformer相比, MAE平均降低了10.36%. 特别的, 相比于目前最先进的PDFormer模型, MAE平均降低了1.24%, 能取得更好的预测效果.
    优先出版日期:  2024-01-19 , DOI: 10.15888/j.cnki.csa.009441
    摘要:
    数据在机器学习、人工智能等领域的研究和开发工作中占据了极其重要的地位. 然而现实中存在的一些因素导致数据需求者无法获得符合工作要求的真实数据集, 例如隐私问题、数据稀缺和数据质量较差等. 针对此现状, 在 SI (sampling-iteration) technique的基础上改进出一种非正态数据合成算法(KMSI). 该算法使用混合类型相关系数矩阵以减小SI technique在目标设定、控制循环等步骤中的度量误差, 通过替换Bootstrap采样法为核密度估计采样法以避免使用真实数据. 实验结果表明, KMSI相较SI technique能够应对复杂分布和混合类型的数据集, 且在合成结果中不包含真实数据; 相较于其他改进方法, KMSI在合成数据集样本量上能够给予使用者更大的自定义空间.
    优先出版日期:  2024-01-19 , DOI: 10.15888/j.cnki.csa.009444
    摘要:
    在6D物体姿态估计领域中, 现有算法往往难以实现对目标物体精准且鲁棒的姿态估计. 为解决该问题, 提出了一种结合残差注意力、混合空洞卷积和标准差信息的物体6D姿态细化网络. 首先, 在Gen6D图片特征提取网络中, 采用混合空洞卷积模块替换传统卷积模块, 以此扩大感受野、加强全局特征捕获能力. 接着, 在3D卷积神经网络中, 加入残差注意力模块, 这有助于区分特征通道的重要程度, 进而在提取关键特征的同时, 减少浅层特征的丢失. 最后, 在平均距离损失函数中, 引入了标准差信息, 从而使模型能够区分物体的更多姿态信息. 实验结果显示, 所提出的网络在LINEMOD数据集和GenMOP数据集上的ADD指标分别达到了68.79%和56.03%. 与Gen6D网络相比, ADD指标分别提升了1.78个百分点和5.64个百分点, 这一结果验证了所提出的网络能够显著提升6D姿态估计的准确性.
    优先出版日期:  2024-01-19 , DOI: 10.15888/j.cnki.csa.009446
    摘要:
    船舶轨迹预测是实现船舶智能航行的前提与基础. 目前, 针对船舶轨迹预测的研究大多仅依赖于船舶自动识别系统(AIS)历史数据, 而未利用到船舶上其他传感器信息. 于是本文提出了一种多模态轨迹预测模型——S-Transformer. 在该网络中, 电子海图中的海水/陆地被分割作为辅助训练目标与真实舟山港AIS数据加以综合从而对模型进行训练, 并对船舶未来航行轨迹进行预测; 其中, 本文还引入segment recurrence来捕获AIS数据的长期依赖关系. 实验结果表明, S-Transformer在不同的船舶行驶情况中都有优秀的预测结果, 并优于相关预测任务的单模态基准模型.
    优先出版日期:  2024-01-19 , DOI: 10.15888/j.cnki.csa.009439
    摘要:
    各领域虚假新闻的传播对社会造成了严重地影响, 不同领域间新闻的领域偏移问题和跨域关联问题也对模型的预测能力造成了极大的挑战. 针对上述问题, 本文提出了一种基于交叉特征感知融合的多领域虚假新闻检测方法. 该方法可以捕捉不同领域间新闻的多种特征差异, 并挖掘新闻之间的关联关系, 从多个维度控制模型在不同领域的特征融合策略. 此外, 本文还提出了一种联合训练框架. 本方法的模型使用本框架进行训练, 在中英文数据集上的预测F1分数分别达到了92.84%和85.49%, 相较于最先进的模型, 预测效果分别提升了1.16%和1.07%.
    优先出版日期:  2024-01-19 , DOI: 10.15888/j.cnki.csa.009454
    摘要:
    传统的多Agent车间调度方法使用单一调度规则, 忽略了生产环境变化对调度规则适用性的影响, 导致调度结果欠佳. 本文针对该问题提出一种自适应实时车间调度方法, 通过上下文赌博机对工件调度过程进行类比建模. 经过若干回合学习的上下文赌博机模型能够依据生产环境制定调度决策, 获得优异的调度结果. 最后, 通过仿真实验验证了提出方法的有效性.
    优先出版日期:  2024-01-18 , DOI: 10.15888/j.cnki.csa.009438
    摘要:
    针对目前大多数方面情感三元组提取方法存在着没有充分考虑语法结构和语义相关性的问题. 本文提出一种结合语法结构和语义信息的方面情感三元组提取模型, 首先提出使用依赖解析器得到所有依赖弧的概率矩阵构建语法图, 提取丰富的语法结构信息. 其次利用自注意力机制构建语义图, 表示单词与单词之间的语义相关性, 从而减低噪声词的干扰. 最后设计了一个相互仿射变换层, 让模型可以更好地交换语法图和语义图之间的相关特征, 提升模型情感三元组提取的表现. 在多个公开数据集上进行验证. 实验表明, 与现有的情感三元组提取模型相比, 精确度(P)、召回率(R)和F1值整体都有提高, 验证了结合语法结构和语义信息在方面情感三元组提取的有效性.
    优先出版日期:  2024-01-18 , DOI: 10.15888/j.cnki.csa.009437
    摘要:
    作为融合多源异构知识图谱的主要手段, 实体对齐一般首先编码实体等图结构信息, 而后通过计算实体间相似度来获取对齐实体. 然而, 现存的多模态对齐方法往往直接引入预训练方法表达模态特征, 忽略了模态间的融合以及模态特征与图结构间的融合. 因此, 本文提出一种关系敏感型的多子图图神经网络(RAMS)方法. 通过多子图图神经网络编码方法对模态信息与图结构进行结合并获得实体表征, 通过跨域相似度计算得到对齐结果. 广泛且多角度的实验证明了本文所提出的模型在准确率、效率、鲁棒性方面均超过了基线模型.
    优先出版日期:  2024-01-18 , DOI: 10.15888/j.cnki.csa.009435
    摘要:
    随着智能体数量的增加, 多智能体系统中潜在的通信链路数量呈指数级增长. 过多冗余链路的存在给系统带来了大量的能源浪费和维护成本, 而盲目地去除链路又会降低系统的稳定性和安全性. 代数连通度是衡量图连通性的重要指标之一. 然而, 传统的半正定规划(SDP)方法和启发式算法在求解大规模场景下的最大化代数连通度问题时非常耗时. 在本文中, 我们提出了一种监督式的图神经网络模型来优化多智能体系统的代数连通度. 我们将传统的SDP方法应用于小规模任务场景中, 得到足够丰富的训练样本和标签. 在此基础上, 我们训练了一个图神经网络模型, 该模型可用于更大规模的任务场景中. 实验结果表明, 当需要去除15条边时, 我们的模型的平均性能达到了传统SDP方法的98.39%. 此外, 我们的模型计算时间极其有限, 可以推广到实时场景中去.
    优先出版日期:  2024-01-18 , DOI: 10.15888/j.cnki.csa.009412
    摘要:
    针对多幅图像在传输中的安全性问题, 本文提出了一种基于多混沌系统的多图像加密算法. 首先, 利用离散小波变换对多幅图像进行预处理, 得到一幅拼接的大图像; 接着, 利用logistic-sine-cosine (LSC)映射生成混沌序列, 进而生成用于置乱的矩阵O对像素位置进行置乱; 最后, 采用超混沌Lorenz系统生成四维混沌序列, 利用其对置乱后的图像进行双向扩散和行列置乱, 获得最终密文图像. 所提算法加解密过程简单, 执行效率高. 实验结果经多方面分析后得出该算法的密钥空间大, 可以抵御多种攻击手段, 具有较好的加密效果和安全性.
    优先出版日期:  2024-01-18 , DOI: 10.15888/j.cnki.csa.009359
    摘要:
    本文针对克隆选择算法(CSA)存在的问题, 如搜索速度慢、收敛精度低、容易陷入局部最优, 提出一种基于定向变异的改进克隆选择算法(DMSCSA). 该算法引入Halton序列来生成均匀分布的初始化种群, 实现对解空间更高效的搜索; 采用黄金正弦变异策略在迭代过程中对优秀抗体定向变异, 提升算法收敛速度; 引入柯西变异策略, 能够在保证种群多样性的前提下提高算法跳出局部最优的能力. 使用CEC2019测试函数集中的8个不同的测试函数并与其他同类型算法进行对比实验, 通过实验结果可知, DMSCSA算法在寻优精度、收敛速度等方面均有提升.
    优先出版日期:  2024-01-18 , DOI: 10.15888/j.cnki.csa.009459
    摘要:
    在核心任务场景下训练深度神经网络 (DNN) 需要越来越多的算力资源, 这刺激了基于云端预测API接口的模型的窃取与盗用, 同时也违反了模型所有者的知识产权. 为了追踪公开的非法模型副本, 深度神经网络的模型指纹技术为希望保持模型完整性的模型所有者, 提供了一种强大的版权验证方案. 然而, 现有的模型指纹方案主要基于输出层面的内在痕迹 (例如: 特定输入样本下的错误预测行为) , 这导致在模型指纹验证阶段缺乏隐蔽性. 本文基于模型预测时的显著图 (saliency map) 痕迹, 提出了一种全新的任意下游任务通用的模型指纹方案. 本文的方案提出了受约束的显著图操控目标, 构建标签不变和自然的指纹样本, 显著提高了模型指纹的隐蔽性. 根据对3种典型任务场景下全面的评估结果, 本文提出的方法被证明能够显著地增强现有方案的指纹版权验证的效果, 同时保持高度的模型指纹隐蔽性.
    优先出版日期:  2024-01-18 , DOI: 10.15888/j.cnki.csa.009458
    摘要:
    单通道语音增强任务中相位估计不准确会导致增强语音的质量较差, 针对这一问题, 提出了一种基于深度复数轴向自注意力卷积循环网络(deep complex axial self-attention convolutional recurrent network, DCACRN)的语音增强方法, 在复数域同时实现了语音幅度信息和相位信息的增强. 首先使用基于复数卷积网络的编码器从输入语音信号中提取复数表示的特征, 并引入卷积跳连模块用以将特征映射到高维空间进行特征融合, 加强信息间的交互和梯度的流动. 然后设计了基于轴向自注意力机制的编码器-解码器结构, 利用轴向自注意力机制来增强模型的时序建模能力和特征提取能力. 最后通过解码器实现对语音信号的重构, 同时利用混合损失函数优化网络模型, 提升增强语音信号的质量. 实验在公开数据集Valentini和DNS Challenge上进行, 结果表明所提方法相对于其他模型在客观语音质量评估(perceptual evaluation of speech quality, PESQ)和短时客观可懂度(short-time objective intelligibility, STOI)两项指标上均有提升, 在非混响数据集中, PESQ比DCTCRN (deep cosine transform convolutional recurrent network)提高了12.8%, 比DCCRN (deep complex convolutional recurrent network)提高了3.9%, 验证了该网络模型在语音增强任务中的有效性.
    优先出版日期:  2024-01-18 , DOI: 10.15888/j.cnki.csa.009450
    摘要:
    当前, 大部分的学生课堂行为识别工作主要基于单帧图像进行, 忽略了行为的连贯性, 因此不能充分利用视频信息来对学生的课堂行为进行准确刻画. 所以, 本文提出一种改进的YOWO算法模型, 有效利用视频信息对学生课堂行为进行识别. 首先, 本文采集某高校真实课堂教学中的授课录像, 制作出包含5类学生课堂行为的AVA格式视频数据集; 其次, 采用时移模块TSM (temporal shift module), 用来增强模型获取时间上下文信息的能力; 最后, 采用非局部操作模块non-local来提高模型提取关键位置信息的能力. 实验结果表明, 通过对YOWO模型的优化, 使得网络的识别性能更佳. 在学生课堂行为数据集上, 改进后的算法的mAP值为95.7%, 相较于原YOWO算法在mAP值上提高了4.6%; 模型参数量为81.97×106, 计算量为22.6 GFLOPs, 参数量和计算量分别降低32.3%和9.6%; 检测速度为24.03 f/s, 提升了约3 f/s.
    优先出版日期:  2024-01-18 , DOI: 10.15888/j.cnki.csa.009448
    摘要:
    通过直接处理原始数据的每个视图, 多视图子空间聚类算法通常可以获得潜在的子空间表示矩阵. 然而, 这些方法往往低估了冗余数据的影响, 因此在潜在子空间表示中准确捕捉精确的聚类结果具有挑战性. 此外, 用于产生聚类结果的 K-means 算法很容易忽略子空间内数据的局部结构, 导致结果不稳定. 针对上述问题, 我们提出了一种多视图子空间方法来获取高质量的子空间表示. 具体来说, 我们首先通过特征分解方法获得鲁棒性表示. 然后, 我们为多个视图构建一个联合潜在子空间表示. 接下来, 我们使用谱旋转来获得聚类结果, 并对划分矩阵采用正交约束来重构子空间, 从而提高聚类性能. 最后, 我们使用迭代优化算法来解决相关的优化问题. 我们在5个基准数据集上进行了实验, 结果表明, 与最近的多视图聚类算法相比, 我们的算法更加有效.
    优先出版日期:  2024-01-18 , DOI: 10.15888/j.cnki.csa.009449
    摘要:
    一些主流的图像任意风格迁移模型在保持内容图像的显著性信息和细节特征方面依然有局限性, 生成的图像往往具有内容模糊、细节失真等问题. 针对以上问题, 本文提出一种可以有效保留内容图像细节特征的图像任意风格迁移模型. 模型包括灵活地融合从编码器提取到的浅层至深层的多层级图像特征; 提出一种新的特征融合模块, 该模块可以高质量地融合内容特征和风格特征. 此外, 还提出一个新的损失函数, 该损失函数可以很好地保持内容和风格全局结构, 消除伪影. 实验结果表明, 本文提出的图像任意风格迁移模型可以很好地平衡风格和内容, 保留内容图像完整的语义信息和细节特征, 生成视觉效果更好的风格化图像.
    优先出版日期:  2024-01-18 , DOI: 10.15888/j.cnki.csa.009447
    摘要:
    针对基于会话的推荐算法仅对用户单一偏好进行静态建模而无法捕捉用户受环境影响偏好产生的波动, 从而降低推荐准确性的问题. 提出融合双分支动态偏好的会话推荐方法: 首先, 通过异构超图来建模不同类型信息, 设计双分支聚合机制获取以及整合异构超图中信息并且学习多类型节点之间的关系, 再用价格嵌入增强器来加强类别和价格之间关系; 其次, 设计双层偏好编码器, 其中采用多尺度时序Transformer提取用户动态价格偏好, 利用软注意机制和反向位置编码学习用户动态兴趣偏好; 最后, 用门控机制融合用户多类型动态偏好, 向用户进行推荐. 通过在Cosmetics和Diginetica-buy两个数据集上进行实验, 结果证明与其他对比算法相比在PrecisionMRR评价指标中有显著的提升.
    优先出版日期:  2024-01-17 , DOI: 10.15888/j.cnki.csa.009443
    摘要:
    本文针对无人机图像点云道路缺陷检测问题, 提出了一种基于点云切片平面拟合与聚类的道路缺陷检测方法. 首先, 采集无人机图像进行三维重建生成图像点云, 对点云进行坡度滤波与统计离群点滤波, 消除噪声和异常点的干扰. 然后, 对点云进行切片并利用随机采样一致性平面拟合算法估计道路的平面模型. 随后, 运用点云DBSCAN聚类算法分类出边缘噪声与道路损伤点云. 最后, 采用点云切片法对估计损伤程度. 在实验中, 我们使用真实无人机采集的点云数据, 并与基于点云垂直度特征检测方法进行了对比. 实验结果表明, 本文方法表现出较高的准确性和鲁棒性, 体积估计的误差为1307 cm3. 相较于传统方法, 本文方法能够更精确地检测出道路损伤, 并能适应复杂的道路形状变化.
    优先出版日期:  2024-01-17 , DOI: 10.15888/j.cnki.csa.009434
    摘要:
    退火炉内带钢的长度受到温度、张力等因素的影响而变化, 导致辊的转速改变以及焊缝位置的不确定, 从而威胁生产安全. 为了准确预测辊的转速以计算焊缝的实时位置, 本文提出基于带状稀疏柯西自注意力的BSCWEformer (banded sparse Cauchy weight enhanced Transformer)模型. 模型采用带状稀疏的、使用基于相对位置计算的柯西分布权重值增强的自注意力结构, 在提高相邻输入序列的重要性的同时, 将自注意力的复杂度由二次方降低为线性. 通过实际生产数据进行实验, 并与LogSparse Transformer、Transformer、RNMT+等模型进行对比, 得出本文所提出的BSCWEformer模型在退火炉内分组式辊速序列预测任务上具有较高的预测精度.
    优先出版日期:  2024-01-17 , DOI: 10.15888/j.cnki.csa.009409
    摘要:
    本文将无信号交叉路口内部区域离散化为多个路权点, 并将车辆右转弯与行人或非机动车发生碰撞造成交通事故时所占的路权点设为“故障点”, 故障点有一个至多个, 本文研究无信号交叉路口在发生车辆故障时的通行效率问题. 选择麻雀搜索算法提高车辆调度的通行效率, 但是该算法存在前期易陷入局部最优值而后期寻优精度不高等问题, 为解决此问题, 引入自适应学习参数和等级反向学习的改进策略, 提出基于自适应参数和等级反向学习的麻雀算法(ALSSA). 选取13个基准测试函数以及 Wilcoxon秩和检验P值验证ALSSA的有效性, 结果表明, 改进的麻雀搜索算法与其他算法相比, 全局搜索能力、寻优精度等都有较大提升. 最后, 计算双向两车道、双向四车道、双向八车道不同车流量下的最优通行时间.
    优先出版日期:  2024-01-17 , DOI: 10.15888/j.cnki.csa.009424
    摘要:
    多视图子空间聚类是一种从子空间中学习所有视图共享的统一表示, 挖掘数据潜在聚类结构的方法. 作为一种处理高维数据的聚类方法, 子空间聚类是多视图聚类领域的研究热点之一. 多视图低秩稀疏子空间聚类是一种结合了低秩表示和稀疏约束的子空间聚类方法. 该算法在构造亲和矩阵过程中, 利用低秩稀疏约束同时捕捉了数据的全局结构和局部结构, 优化了子空间聚类的性能. 三支决策是一种基于粗糙集模型的决策思想, 常被应用于聚类算法来反映聚类过程中对象与类簇之间的不确定性关系. 本文基于三支决策的思想, 设计了一种投票制度作为决策依据, 将其与多视图稀疏子空间聚类组成一个统一框架, 从而形成一种新的算法. 在多个人工数据集和真实数据集上的实验表明, 该算法可提高多视图聚类的准确性.
    优先出版日期:  2024-01-17 , DOI: 10.15888/j.cnki.csa.009463
    摘要:
    移动边缘计算和超密集网络技术在扩大移动设备计算能力和增加网络容量方面有明显的优势. 然而, 在两者融合的场景下, 如何有效降低基站之间的同信道干扰, 减少任务传输的时延和能耗是一个重要研究课题. 本文设计了一个基于多基站博弈均衡的分布式无线资源管理算法. 将小基站之间的无线资源管理问题转化为博弈问题, 提出一种基于奖励驱动的策略选择算法. 基站通过迭代不断更新其策略的选择概率, 最终优化子信道分配和发射功率的调控. 仿真结果表明, 我们的算法在提高信道利用率和降低任务处理的时延和能耗方面具有优势.
    优先出版日期:  2024-01-17 , DOI: 10.15888/j.cnki.csa.009468
    摘要:
    步态识别是根据人体的行走方式进行身份识别. 目前, 大多数步态识别方法通过浅层神经网络进行特征提取, 在室内步态数据集表现良好, 然而在近年新公布的室外步态数据集中性能表现不佳. 为了解决室外步态数据集的带来的严峻挑战, 提出了一种基于视频残差神经网络的深度步态识别模型. 在特征提取阶段, 基于提出的视频残差块构建深层3D卷积神经网络(3D CNN), 提取整个步态序列的时空动力学特征; 然后, 引入时序池化和水平金字塔映射降低采样特征分辨率并提取局部步态特征; 使用联合损失函数驱动训练过程, 最后通过BNNeck平衡损失函数并调整特征空间. 实验分别在公开的室内 (CASIA-B)、室外(GREW、Gait3D)这3个步态数据集上进行. 实验结果表明, 该模型在室外步态数据集中的准确率以及收敛速度优于其他模型.
    优先出版日期:  2024-01-09 , DOI: 10.15888/j.cnki.csa.009432
    摘要:
    针对高光谱图像(hyperspectral image)样本人工标记困难导致的样本数量不足的问题, 本文提出了一个结合注意力和空间邻域的少样本孪生网络算法. 它首先对高光谱图像进行PCA预处理, 实现数据降维; 其次, 对模型训练样本采用间隔采样和边缘采样的方式进行选取, 以有效减少冗余信息; 之后, Siamese network以大小不同的patch形式进行两两结合, 构建出样本对作为训练集进行训练, 不仅实现了数据增强的效果, 还能在提取光谱信息特征的同时, 充分提取目标像素光谱信息以及其周围邻域空间信息; 最后, 添加光谱维度的注意力模块以及空间维度的相似度度量模块, 分别对光谱信息和空间邻域信息进行权重分布, 以达到提升分类性能的目的. 实验结果表明, 本文提出的方法在部分公开数据集上对比常用方法取得了较好的实验效果.
    优先出版日期:  2024-01-09 , DOI: 10.15888/j.cnki.csa.009419
    摘要:
    细粒度图像分类的主要挑战在于类间的高度相似性和类内的差异性. 现有的研究多数基于深层的特征而忽略了浅层细节信息, 然而深层的语义特征由于多次卷积和池化操作往往会丢失大量的细节信息. 为了更好的整合浅层和深层的信息, 提出了基于跨层协同注意和通道分组注意的细粒度图像分类方法. 首先, 通过ResNet50加载预训练模型作为骨干网络提取特征, 由最后3个阶段提取的特征以3个分支的形式输出, 每一个分支的特征通过跨层的方式与其余两个分支的特征计算协同注意并交互融合, 其中最后一个阶段的特征经过通道分组注意模块以增强语义特征的学习能力. 模型训练可以高效地以端到端的方式在没有边界框和注释的情况下进行训练, 实验结果表明, 该算法在3个常细粒度图像数据集CUB-200-2011、Standford Cars和FGVC-Aircraft上的准确率分别达到了89.5%、94.8%和94.7%.
    优先出版日期:  2024-01-09 , DOI: 10.15888/j.cnki.csa.009420
    摘要:
    在大型和高维数据上进行有效检测, 在实际应用中具有重要意义. 异常点检测是指识别出偏离一般数据分布的数据点, 其核心是密度估计. 尽管像深度自编码高斯混合模型通过先降低维度, 再进行密度估计已经取得了重大进展, 但是它对低维潜在空间引入噪声, 并且在对密度估计模块优化时存在一些限制, 例如需要保证协方差是正定矩阵. 为解决这些限制, 本文提出一种用于无监督异常检测的深度自编码标准化流(deep autoencoder normalizing flow, DANF). 该模型利用深度自编码器为每个输入样本生成低维潜在空间表示和重构误差, 进而将其输入标准化流(normalizing flow, NF), 最终映射成高斯分布. 在多个公开的基准数据集上的实验结果表明, 深度自编码标准化流模型显著优于最先进的异常检测技术, 在评估指标F1-score上最高提升26.43%.
    优先出版日期:  2024-01-09 , DOI: 10.15888/j.cnki.csa.009436
    摘要:
    由于空气污染与吸烟等原因, 肺炎已成为人类死亡率最高的疾病之一. 随着机器学习与深度学习技术在医疗图像检测上的应用, 为临床专家诊断各类疾病提供了帮助. 但由于缺少有效的配对肺部X射线数据集, 以及现有针对肺炎检测的方法均采用不是针对肺炎任务的普遍分类模型, 难以发现肺炎图像与正常图像的细微差别, 导致识别失败. 为此, 本文通过数据裁剪、旋转等方式扩充数据集中的正常图像; 再使用50层深度残差网络对胸部X射线中的浅层肺炎特征进行学习; 然后, 通过两层字典对残差网络学习到的肺炎特征进行更深度的抽象和学习, 发现不同肺部图像之间的微小差别; 最后, 融合残差网络和字典学习提取到的多级肺炎特征, 构建肺炎检测模型. 为了验证算法的有效性, 在Chest Xray肺炎数据集上评估肺炎检测模型的性能. 根据测试结果, 本文提出模型的检测准确率为97.12%; 指标测试中, 精度与召回率之间的调和平均数上的得分为98. 与现有方法相比, 获得了更高的识别精度.
    优先出版日期:  2024-01-09 , DOI: 10.15888/j.cnki.csa.009440
    摘要:
    骨关节疾病自古是人类最高发的疾病之一, 随着老龄化的不断加快, 这类疾病日趋广泛, 关节外科医师面临着巨大挑战. 对人体关节的图像分割方法研究可以帮助医生进行临床诊断和治疗, 然而, 由于存在噪声、模糊、对比度低等问题, 医学图像的特征提取比普通图像更具挑战性, 而且目前大多数分割模型在编码器和解码器之间都采用了普通的跳跃连接, 没有注重解决跳跃连接过程中的信息间隙和损失问题. 为解决这些问题, 提出一种基于DH-Swin Unet的医学图像分割算法, 该模型在Swin-Unet模型的基础上, 在跳跃连接中引入密集连接的Swin Transformer块, 并加入混合注意力机制, 来强网络的特征信息传递. 通过在某三甲医院提供的真实临床数据对所提方法的性能进行评价, 结果表明, 所提出的方法取得了DSC为86.79%、HD为32.05 mm的分割结果, 在关节疾病的临床诊断中具有一定的实用价值.
    优先出版日期:  2024-01-02 , DOI: 10.15888/j.cnki.csa.009433
    摘要:
    在关系抽取任务中, 通常利用构建依赖树或句法树来获得更深层和丰富的结构信息. 图神经网络作为一种强大的图结构数据表示学习方法, 可以更好地对这种复杂数据结构进行建模. 本文介绍了基于图神经网络的关系抽取方法, 旨在深入理解该领域的最新研究进展和趋势. 首先简要介绍了图神经网络的分类和结构, 然后详细阐述了基于图神经网络的关系抽取方法的核心技术和应用场景, 包括句子级和文档级方法, 以及实体关系联合抽取方法. 并分析和比较了各个方法的优缺点和性能表现, 并探讨了未来可能的研究方向和挑战.
    优先出版日期:  2024-01-02 , DOI: 10.15888/j.cnki.csa.009429
    摘要:
    针对室内复杂场景中, 图像语义分割存在的特征损失和双模态有效融合等问题, 提出了一种基于编码器-解码器架构的融合注意力机制的轻量级语义分割网络. 首先采用两个残差网络作为主干网络分别对RGB和深度图像进行特征提取, 并在编码器中引入极化自注意力机制, 然后设计引入双模态融合模块在不同阶段对RGB特征和深度特征进行有效融合, 接着引入并行聚合金字塔池化以获取区域之间的依赖性. 最后, 采用3个不同尺寸的解码器将前面的多尺度特征图进行跳跃连接并融合解码, 使分割结果含有更多的细节纹理. 将本文提出的网络模型在NYUDv2数据集上进行训练和测试, 并与一些较先进RGBD语义分割网络对比, 实验证明本文网络具有较好分割性能.
    优先出版日期:  2024-01-02 , DOI: 10.15888/j.cnki.csa.009430
    摘要:
    链路预测是通过已知的网络拓扑和节点属性挖掘未来时刻节点潜在关系的重要手段, 是预测缺失链路和识别虚假链路的有效方法, 在研究社会网络结构演化中具有现实意义. 传统的链路预测方法基于节点信息或路径信息相似性进行预测, 然而, 前者考虑指标单一导致预测精度受限, 后者由于计算复杂度过高不适合在规模较大网络中应用. 通过对网络拓扑结构的分析, 本文提出一种基于节点交互度(interacting degree of nodes, IDN)的社会网络链路预测方法. 该方法首先根据网络中节点间的路径特征, 引入了节点效率的概念, 从而提高对于没有公共邻居节点之间链路预测的准确性; 为了进一步挖掘节点间共同邻居的相关属性, 借助分析节点间共同邻居的拓扑结构, 该方法还创新性地整合了路径特征和局部信息, 提出了社会网络节点交互度的定义, 准确刻画出节点间的相似度, 从而增强网络链路的预测能力; 最后, 本文借助6个真实网络数据集对IDN方法进行验证, 实验结果表明, 相比于目前的主流算法, 本文提出的方法在AUCPrecision两个评价指标上均表现出更优的预测性能, 预测结果平均分别提升22%和54%. 因此节点交互度的提出在链路预测方面具有很高的可行性和有效性.
    优先出版日期:  2023-12-26 , DOI: 10.15888/j.cnki.csa.009416
    摘要:
    在我国工厂的工业化生产中, 带式运输机占有重要的地位, 但是在其运输物料的过程中, 常有木板、金属管、大型金属片等混入物料中, 从而对带式运输机的传送带造成损毁, 引起巨大的经济损失. 为了检测出传送带上的不规则异物, 设计了一种新的异物检测方法. 针对传统异物检测方法中存在的对于图像特征提取能力不足以及网络感受野相对较小的问题, 我们提出了一种基于coordinate attention和空洞卷积的单阶段异物识别方法. 首先, 网络利用coordinate attention机制, 使网络更加关注图像的空间信息, 并对图像中的重要特征进行了增强, 增强了网络的性能; 其次, 在网络提取多尺度特征的部分, 将原网络的静态卷积变为空洞卷积, 有效减少了常规卷积造成的信息损失; 除此之外, 我们还使用了新的损失函数, 进一步提高了网络的性能. 实验结果证明, 我们提出的网络能有效识别出传送带上的异物, 较好地完成异物检测任务.
    优先出版日期:  2023-12-26 , DOI: 10.15888/j.cnki.csa.009417
    摘要:
    基于计算机断层扫描(CT)图像的多器官精准分割能够准确诊断病灶, 快速制定治疗计划, 提高临床工作的效率. 传统分割算法针对形变大、体积较小且边缘模糊的器官分割效果相对较差. 本文提出了一种改进的U-Net的医学图像分割网络(MAU-Net), 通过引入两个模块, 旨在实现对多器官的精准分割. 多尺度空洞卷积模块通过不同内核大小实现捕捉目标器官多尺度特征. 动态注意力模块精确提取重要特征实现分支间的权重平衡. 通过消融实验和其他主流网络的对比实验, 验证了MAU-Net的优越性. 相比于传统的U-Net模型, MAU-Net在所有器官上平均Dice相关系数(DSC)提高了3.39%, 平均95%豪斯多夫距离(HD)降低了4.84 mm. MAU-Net在多器官分割任务中展现了出色的鲁棒性和应用潜力, 有助于提高临床工作效率和医疗诊断的准确性.
    优先出版日期:  2023-12-26 , DOI: 10.15888/j.cnki.csa.009418
    摘要:
    移动机器人路径规划问题的节点数量大、搜索空间广, 且对安全性和实时性有要求等因素, 针对移动机器人多目标路径规划问题, 提出一种新颖的融合强化学习的多目标智能优化算法. 首先, 该算法采用NSGA-II为基础框架, 利用强化学习的赋予个体学习能力, 设计一种SARSA算子提高算法的全局搜索效率. 其次, 为了加速算法的收敛速度和保证种群多样性, 增加自适应模拟二进制交叉算子(tanh-SBX)作为辅助算子, 并将种群分为两种性质不同的子种群: 精英种群和非精英种群. 最后, 设计了4种不同的策略, 通过模拟退火算法的Metropolis准则计算更新策略的概率, 让最合适的策略引导种群的优化方向, 以平衡探索和利用. 仿真实验表明, 该算法在不同复杂度的环境下均能找到最佳路径. 相比传统智能仿生算法, 在更加复杂的环境中, 所提出的算法能有效平衡优化目标, 找到更优的安全路径.
    优先出版日期:  2023-12-26 , DOI: 10.15888/j.cnki.csa.009411
    摘要:
    针对街景图像语义分割任务中的目标尺寸差异大、多尺度特征难以高效提取的问题, 本文提出了一种语义分割网络(LDPANet). 首先, 将空洞卷积与引入残差学习单元的深度可分离卷积结合, 来优化编码器结构, 在降低了计算复杂度的同时缓解梯度消失的问题. 然后利用层传递的迭代空洞空间金字塔, 将自顶向下的特征信息依次融合, 提高了上下文信息的有效交互能力; 在多尺度特征融合之后引入属性注意力模块, 使网络抑制冗余信息, 强化重要特征. 再者, 以通道扩展上采样代替双线插值上采样作为解码器, 进一步提升了特征图的分辨率. 最后, LDPANet方法在Cityscapes和CamVid数据集上的精度分别达到了91.8%和87.52%, 与近几年网络模型相比, 本文网络模型可以精确地提取像素的位置信息以及空间维度信息, 提高了语义分割的准确率.
    优先出版日期:  2023-12-25 , DOI: 10.15888/j.cnki.csa.009423
    摘要:
    随着互联网和连接技术的提高, 传感器产生的数据逐渐趋于复杂化. 深度学习方法在处理高维数据的异常检测方面取得较好的进展, 图偏差网络(graph deviation network, GDN)学习传感器节点之间关系来预测异常, 并取得一定的效果. 针对图偏差网络模型缺少对时间依赖性以及异常数据不稳定的处理, 提出了基于图偏差网络的外部自编码器模型(graph deviation network-based external attention autoencoder, AEEA-GDN)深度提取表征, 此外在模型训练时引入自适应学习机制, 帮助网络更好的适应异常数据的变化. 在3个现实收集传感器数据集上的实验结果表明, 基于图偏差网络的外部自编码器模型比基线方法更准确的检测异常, 且总体性能更优.
    优先出版日期:  2023-12-25 , DOI: 10.15888/j.cnki.csa.009421
    摘要:
    眼底血管图像分割对青光眼、糖尿病视网膜病变等多种眼部疾病有较好的辅助诊断作用, 目前深度学习因其强大的抽象特征发现能力, 有望满足人们从眼底血管图像中提取特征信息进行图像自动分割的需求, 成为眼底血管图像分割领域的研究热点. 为更好把握该领域的研究进展, 本文对相关数据集和评价指标整理归纳, 对深度学习在眼底血管图像分割中的应用进行详细阐述, 重点梳理各类分割方法的基本思想、网络结构及改进之处, 分析现有眼底管图像分割方法存在的局限性及面临的挑战, 并对该领域未来的研究方向做出展望.
    优先出版日期:  2023-12-25 , DOI: 10.15888/j.cnki.csa.009410
    摘要:
    针对车载环境下小目标难以识别和相机动态移动造成的目标跟踪精度下降问题, 提出一种基于改进YOLOv5与ByteTrack的交通目标跟踪方法. 首先, 引入Transformer与加权特征金字塔(BiFPN)结构的思想重构YOLOv5检测网络, 有效捕获了特征的全局依赖关系, 缓解了深层卷积小目标信息丢失问题, 改善了车载环境下的目标检测性能. 此后, 以ByteTrack为基础提出了添加相机移动补偿的CMC-ByteTrack跟踪方法, 更精准地描述了视频前后帧的数据关联关系, 提高了相机大幅位移时的跟踪精度. 实验结果表明, 改进YOLOv5的平均检测精度(mAP)达到了82.2%, 相比原算法提高了3.9%, 与CMC-ByteTrack结合后的跟踪准确性(MOTA)相比改进前的跟踪方法提高了2.8%.
    优先出版日期:  2023-11-28 , DOI: 10.15888/j.cnki.csa.009377
    摘要:
    随着计算机技术的不断发展, 过程模拟在各行各业中的应用越来越广泛. 过程模拟使用模拟模型来模仿业务流程行为, 它可以用于预测和优化系统的性能, 评估决策的影响并向管理者提供决策依据, 也可以用于减少实验成本和时间. 目前, 如何高效地去构建一个可以信任的仿真模型得到了广泛关注. 本文通过追踪、归纳和分析关于构建业务过程模拟模型方法的相关研究文献, 对基于过程模型、系统动力学和深度学习的3种仿真建模方法的流程、优缺点和研究进展进行了阐述, 并探讨了过程模拟面临的挑战和未来的发展方向, 以期为业务过程模拟未来的研究方向提供参考.
    优先出版日期:  2022-03-31 , DOI: 10.15888/j.cnki.csa.008603
    [摘要] (516) [HTML] (8) [PDF 1.10 M] (6689)
    摘要:
    电力能源的安全在国家安全中占有重要的地位. 随着电力5G通信技术的发展, 大量电力终端产生定位需求. 传统GPS定位方法存在易受欺骗的问题, 如何有效提升GPS定位的安全性成为一个亟待研究的问题. 本文提出了一种基于基站辅助的电力5G终端GPS欺骗检测算法, 利用安全性较高的基站定位来检验可能被欺骗的GPS定位, 并且引入了一致性因数用来描述GPS定位结果和基站定位结果的一致性. 通过计算一致性因数, 如果大于设定的阈值则判断发生欺骗, 反之则GPS工作正常. 实验表明, 在使用本论文模型情况下, 本算法的准确率为99.98%, 优于传统机器学习分类算法. 此外, 本方法在运行速度上相较于传统机器学习分类算法也有一定程度的提升.
  • 全文下载排行(总排行年度排行各期排行)
    摘要点击排行(总排行年度排行各期排行)

  • 快速检索
    过刊检索
    全选反选导出
    显示模式:
    2000,9(2):38-41, DOI:
    [摘要] (12432) [HTML] (0) [PDF ] (19490)
    摘要:
    本文详细讨论了VRML技术与其他数据访问技术相结合 ,实现对数据库实时交互的技术实现方法 ,并简要阐述了相关技术规范的语法结构和技术要求。所用技术手段安全可靠 ,具有良好的实际应用表现 ,便于系统移植。
    1993,2(8):41-42, DOI:
    [摘要] (9245) [HTML] (0) [PDF ] (29274)
    摘要:
    本文介绍了作者近年来应用工具软件NU清除磁盘引导区和硬盘主引导区病毒、修复引导区损坏磁盘的 经验,经实践检验,简便有效。
    1995,4(5):2-5, DOI:
    [摘要] (8981) [HTML] (0) [PDF ] (11521)
    摘要:
    本文简要介绍了海关EDI自动化通关系统的定义概况及重要意义,对该EDI应用系统下的业务运作模式所涉及的法律问题,采用EDIFACT国际标准问题、网络与软件技术问题,以及工程管理问题进行了结合实际的分析。
    2016,25(8):1-7, DOI: 10.15888/j.cnki.csa.005283
    [摘要] (8259) [HTML] () [PDF 1167952] (34444)
    摘要:
    从2006年开始,深度神经网络在图像/语音识别、自动驾驶等大数据处理和人工智能领域中都取得了巨大成功,其中无监督学习方法作为深度神经网络中的预训练方法为深度神经网络的成功起到了非常重要的作用. 为此,对深度学习中的无监督学习方法进行了介绍和分析,主要总结了两类常用的无监督学习方法,即确定型的自编码方法和基于概率型受限玻尔兹曼机的对比散度等学习方法,并介绍了这两类方法在深度学习系统中的应用,最后对无监督学习面临的问题和挑战进行了总结和展望.
    2011,20(11):80-85, DOI:
    [摘要] (7400) [HTML] () [PDF 863160] (39329)
    摘要:
    在研究了目前主流的视频转码方案基础上,提出了一种分布式转码系统。系统采用HDFS(HadoopDistributed File System)进行视频存储,利用MapReduce 思想和FFMPEG 进行分布式转码。详细讨论了视频分布式存储时的分段策略,以及分段大小对存取时间的影响。同时,定义了视频存储和转换的元数据格式。提出了基于MapReduce 编程框架的分布式转码方案,即Mapper 端进行转码和Reducer 端进行视频合并。实验数据显示了转码时间随视频分段大小和转码机器数量不同而变化的趋势。结
    2008,17(5):122-126, DOI:
    [摘要] (7383) [HTML] (0) [PDF ] (44941)
    摘要:
    随着Internet的迅速发展,网络资源越来越丰富,人们如何从网络上抽取信息也变得至关重要,尤其是占网络资源80%的Deep Web信息检索更是人们应该倍加关注的难点问题。为了更好的研究Deep Web爬虫技术,本文对有关Deep Web爬虫的内容进行了全面、详细地介绍。首先对Deep Web爬虫的定义及研究目标进行了阐述,接着介绍了近年来国内外关于Deep Web爬虫的研究进展,并对其加以分析。在此基础上展望了Deep Web爬虫的研究趋势,为下一步的研究奠定了基础。
    1999,8(7):43-46, DOI:
    [摘要] (6988) [HTML] (0) [PDF ] (21168)
    摘要:
    用较少的颜色来表示较大的色彩空间一直是人们研究的课题,本文详细讨论了半色调技术和抖动技术,并将它们扩展到实用的真彩色空间来讨论,并给出了实现的算法。
    2007,16(9):22-25, DOI:
    [摘要] (6275) [HTML] (0) [PDF ] (4391)
    摘要:
    本文结合物流遗留系统的实际安全状态,分析了面向对象的编程思想在横切关注点和核心关注点处理上的不足,指出面向方面的编程思想解决方案对系统进行分离关注点处理的优势,并对面向方面的编程的一种具体实现AspectJ进行分析,提出了一种依据AspectJ对遗留物流系统进行IC卡安全进化的方法.
    2012,21(3):260-264, DOI:
    [摘要] (6141) [HTML] () [PDF 336300] (41985)
    摘要:
    开放平台的核心问题是用户验证和授权问题,OAuth 是目前国际通用的授权方式,它的特点是不需要用户在第三方应用输入用户名及密码,就可以申请访问该用户的受保护资源。OAuth 最新版本是OAuth2.0,其认证与授权的流程更简单、更安全。研究了OAuth2.0 的工作原理,分析了刷新访问令牌的工作流程,并给出了OAuth2.0 服务器端的设计方案和具体的应用实例。
    2011,20(7):184-187,120, DOI:
    [摘要] (5976) [HTML] () [PDF 731903] (29613)
    摘要:
    针对智能家居、环境监测等的实际要求,设计了一种远距离通讯的无线传感器节点。该系统采用集射频与控制器于一体的第二代片上系统CC2530 为核心模块,外接CC2591 射频前端功放模块;软件上基于ZigBee2006 协议栈,在ZStack 通用模块基础上实现应用层各项功能。介绍了基于ZigBee 协议构建无线数据采集网络,给出了传感器节点、协调器节点的硬件设计原理图及软件流程图。实验证明节点性能良好、通讯可靠,通讯距离较TI 第一代产品有明显增大。
    2004,13(10):7-9, DOI:
    [摘要] (5774) [HTML] (0) [PDF ] (9169)
    摘要:
    本文介绍了车辆监控系统的组成,研究了如何应用Rockwell GPS OEM板和WISMOQUIKQ2406B模块进行移动单元的软硬件设计,以及监控中心 GIS软件的设计.重点介绍嵌入TCP/IP协议处理的Q2406B模块如何通过AT指令接入Internet以及如何和监控中心传输TCP数据.
    2008,17(1):113-116, DOI:
    [摘要] (5669) [HTML] (0) [PDF ] (46828)
    摘要:
    排序是计算机程序设计中一种重要操作,本文论述了C语言中快速排序算法的改进,即快速排序与直接插入排序算法相结合的实现过程。在C语言程序设计中,实现大量的内部排序应用时,所寻求的目的就是找到一个简单、有效、快捷的算法。本文着重阐述快速排序的改进与提高过程,从基本的性能特征到基本的算法改进,通过不断的分析,实验,最后得出最佳的改进算法。
    2008,17(8):87-89, DOI:
    [摘要] (5626) [HTML] (0) [PDF ] (38843)
    摘要:
    随着面向对象软件开发技术的广泛应用和软件测试自动化的要求,基于模型的软件测试逐渐得到了软件开发人员和软件测试人员的认可和接受。基于模型的软件测试是软件编码阶段的主要测试方法之一,具有测试效率高、排除逻辑复杂故障测试效果好等特点。但是误报、漏报和故障机理有待进一步研究。对主要的测试模型进行了分析和分类,同时,对故障密度等参数进行了初步的分析;最后,提出了一种基于模型的软件测试流程。
    2008,17(8):2-5, DOI:
    [摘要] (5553) [HTML] (0) [PDF ] (29809)
    摘要:
    本文介绍了一个企业信息门户中单点登录系统的设计与实现。系统实现了一个基于Java EE架构的结合凭证加密和Web Services的单点登录系统,对门户用户进行统一认证和访问控制。论文详细阐述了该系统的总体结构、设计思想、工作原理和具体实现方案,目前系统已在部分省市的广电行业信息门户平台中得到了良好的应用。
    2004,13(8):58-59, DOI:
    [摘要] (5478) [HTML] (0) [PDF ] (25554)
    摘要:
    本文介绍了Visual C++6.0在对话框的多个文本框之间,通过回车键转移焦点的几种方法,并提出了一个改进方法.
    2009,18(3):164-167, DOI:
    [摘要] (5414) [HTML] (0) [PDF ] (26305)
    摘要:
    介绍了一种基于DWGDirectX在不依赖于AutoCAD平台的情况下实现DWG文件的显示、操作、添加的简单的实体的方法,并对该方法进行了分析和实现。
    2009,18(5):182-185, DOI:
    [摘要] (5408) [HTML] (0) [PDF ] (30543)
    摘要:
    DICOM 是医学图像存储和传输的国际标准,DCMTK 是免费开源的针对DICOM 标准的开发包。解读DICOM 文件格式并解决DICOM 医学图像显示问题是医学图像处理的基础,对医学影像技术的研究具有重要意义。解读了DICOM 文件格式并介绍了调窗处理的原理,利用VC++和DCMTK 实现医学图像显示和调窗功能。
    2010,19(10):42-46, DOI:
    [摘要] (5353) [HTML] () [PDF 1301305] (19953)
    摘要:
    综合考虑基于构件组装技术的虚拟实验室的系统需求,分析了工作流驱动的动态虚拟实验室的业务处理模型,介绍了轻量级J2EE框架(SSH)与工作流系统(Shark和JaWE)的集成模型,提出了一种轻量级J2EE框架下工作流驱动的动态虚拟实验室的设计和实现方法,给出了虚拟实验项目的实现机制、数据流和控制流的管理方法,以及实验流程的动态组装方法,最后,以应用实例说明了本文方法的有效性。
    2019,28(6):1-12, DOI: 10.15888/j.cnki.csa.006915
    [摘要] (5324) [HTML] (14801) [PDF 672566] (8686)
    摘要:
    知识图谱是以图的形式表现客观世界中的概念和实体及其之间关系的知识库,是语义搜索、智能问答、决策支持等智能服务的基础技术之一.目前,知识图谱的内涵还不够清晰;且因建档不全,已有知识图谱的使用率和重用率不高.为此,本文给出知识图谱的定义,辨析其与本体等相关概念的关系.本体是知识图谱的模式层和逻辑基础,知识图谱是本体的实例化;本体研究成果可以作为知识图谱研究的基础,促进知识图谱的更快发展和更广应用.本文罗列分析了国内外已有的主要通用知识图谱和行业知识图谱及其构建、存储及检索方法,以提高其使用率和重用率.最后指出知识图谱未来的研究方向.
  • 全文下载排行(总排行年度排行各期排行)
    摘要点击排行(总排行年度排行各期排行)

  • 快速检索
    过刊检索
    全选反选导出
    显示模式:
    2007,16(10):48-51, DOI:
    [摘要] (4594) [HTML] (0) [PDF 0.00 Byte] (85644)
    摘要:
    论文对HDF数据格式和函数库进行研究,重点以栅格图像为例,详细论述如何利用VC++.net和VC#.net对光栅数据进行读取与处理,然后根据所得到的象素矩阵用描点法显示图像.论文是以国家气象中心开发Micaps3.0(气象信息综合分析处理系统)的课题研究为背景的.
    2002,11(12):67-68, DOI:
    [摘要] (3713) [HTML] (0) [PDF 0.00 Byte] (57029)
    摘要:
    本文介绍非实时操作系统Windows 2000下,利用VisualC++6.0开发实时数据采集的方法.所用到的数据采集卡是研华的PCL-818L.借助数据采集卡PCL-818L的DLLs中的API函数,提出三种实现高速实时数据采集的方法及优缺点.
    2008,17(1):113-116, DOI:
    [摘要] (5669) [HTML] (0) [PDF 0.00 Byte] (46828)
    摘要:
    排序是计算机程序设计中一种重要操作,本文论述了C语言中快速排序算法的改进,即快速排序与直接插入排序算法相结合的实现过程。在C语言程序设计中,实现大量的内部排序应用时,所寻求的目的就是找到一个简单、有效、快捷的算法。本文着重阐述快速排序的改进与提高过程,从基本的性能特征到基本的算法改进,通过不断的分析,实验,最后得出最佳的改进算法。
    2008,17(5):122-126, DOI:
    [摘要] (7383) [HTML] (0) [PDF 0.00 Byte] (44941)
    摘要:
    随着Internet的迅速发展,网络资源越来越丰富,人们如何从网络上抽取信息也变得至关重要,尤其是占网络资源80%的Deep Web信息检索更是人们应该倍加关注的难点问题。为了更好的研究Deep Web爬虫技术,本文对有关Deep Web爬虫的内容进行了全面、详细地介绍。首先对Deep Web爬虫的定义及研究目标进行了阐述,接着介绍了近年来国内外关于Deep Web爬虫的研究进展,并对其加以分析。在此基础上展望了Deep Web爬虫的研究趋势,为下一步的研究奠定了基础。
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号