• 当期目录
  • 优先出版
  • 过刊浏览
  • 点击排行
  • 下载排行
  • 综述文章
    快速检索
    过刊检索
    全选反选导出
    显示模式:
    2023,32(2):1-12, DOI: 10.15888/j.cnki.csa.008743
    摘要:
    随着三维视觉的快速发展, 基于深度学习的大规模三维点云实时处理成为研究热点. 以三维空间分布无序的大规模三维点云为背景, 综合分析介绍并对比深度学习实时处理三维视觉问题的最新进展, 对点云分割、形状分类、目标检测等方面算法优势与不足进行详细分析, 给出详细的性能分析与优劣对比, 并对点云常用数据集进行简要介绍, 并给出不同数据集的算法性能对比. 最后, 指出未来在基于深度学习方法处理三维点云问题上的研究方向.
    2023,32(2):13-24, DOI: 10.15888/j.cnki.csa.008938
    摘要:
    区块链技术给加密货币带来了新的变化, 并得到了广泛的应用. 然而, 它仍面临着高吞吐量、低交易延迟、安全性和去中心化的需求和目标. 此外, 消费节点(交易提供者)的意愿难以映射到leader中, 区块开采者热衷于挖矿竞赛也导致中心化和能耗的加剧. 为此, 提出了一种不同于传统PoW (proof-of-work)共识的新型共识算法——PoM (proof-of-market), 及其第一个实施案例——Achain协议. PoM的算法设计使得消费节点进行PoW工作, 并投票选出leader节点. 这不仅离散化了挖矿的工作, 提升了去中心化, 降低了能耗, 还体现了消费节点的意愿, 只有受到最多支持的节点才能成为leader. 在性能上, 相较于PoW型区块链, Achain还提升了可扩展性, 此外, 还提供了一种Achain节点存储优化方案——FastAchain; 在安全性方面, Achain辅以一套激励相容的奖惩机制使得恶意节点的收益期望为负, 这保护了诚实节点的利益, 且Achain可以容忍至多1/3的全网总算力被恶意节点控制. 为了验证Achain的性能表现, 实施了一个大规模网络下的Achain原型用来评估其相关性能, 结果表明Achain达到了预期, 优于一些主流的代表性区块链协议, 且保持了良好的链收敛性和去中心化.
    2023,32(2):25-33, DOI: 10.15888/j.cnki.csa.008919
    摘要:
    准确预测商业销售量未来趋势对于企业开发经营、政府宏观调控等至关重要. 传统的数据预测方法计算时间开销大, 具有主观性, 而现有基于数据驱动的未来商业预测方法没有考虑到数据集中的特征多样. 商业销售量数据是一个时序数据, 时序数据中包含了丰富的时间窗特征、滞后历史特征和价格变化趋势特征等众多特征, 先前的研究往往只注重于其中的某些特征, 对于特征的融合和增强探究偏少, 现有的未来商业预测方法的预测精度仍然有待提高. 为此, 本文提出了一种基于多模式特征聚合的未来商业预测方法, 该方法首先将商业销售量数据进行预处理; 然后基于特征工程提取数据集的5组不同的时间窗特征和其他特征; 在机器学习上对于5组时间窗特征采用硬投票机制选择合适的模型训练, 同时也采用神经网络的优化模型提取时序特征和预测结果, 然后分析销售量数据集和某些特征之间的依赖关系; 最后基于软投票模型完整地模型融合实现了商业销售量的高精度预测. 一系列实验结果表明, 本文提出的方法具有较高预测精度和效率, 明显优于现有预测方法.
    2023,32(2):34-44, DOI: 10.15888/j.cnki.csa.008953
    摘要:
    如何测度各省工业绿色发展水平高低, 判断各省工业绿色创新能力差异, 本文从绿色投入要素和绿色产出效益视角构建集结综合属性值的工业绿色发展多指标评价体系; 并在云模型基础上提出了基于混合多维云模型的区间多属性测度方法. 该方法创新性地利用区间权重和云权重的相互转换, 在解决多指标权重不一的问题后, 再运用父云贴近度计算工业绿色发展水平, 云投影度测定工业绿色创新能力; 最后采用省际间的工业面板数据进行验证. 结果表明, 相较于一般的多指标综合评价法, 该测定方法的实证结果与实际情况更相符合, 说明了该方法既能对工业绿色发展水平的整体情况进行评价分析, 也能精确计算出各指标贡献度, 从而判断其是否具有工业绿色创新能力. 因此, 本研究可为各地区调整工业绿色发展水平测度指标、制定工业绿色发展规划提供实质性建议和理论决策依据.
    2023,32(2):45-54, DOI: 10.15888/j.cnki.csa.008943
    摘要:
    现有基于神经网络的电池荷电状态(state of charge, SOC)预测研究大多把重点放在模型结构和相关参数的优化上, 却忽略了训练数据的重要作用. 针对该问题, 文中提出了一种基于特征选择和数据增强的电池SOC预测方法. 首先, 方法根据原始电池充放电数据进行特征工程, 并使用排列重要性(permutation importance, PI)方法选出对模型预测最有帮助的7个特征; 其次, 通过加入高斯噪声来扩大训练数据样本总量, 达到数据增强的目的. 实验使用双向长短时记忆网络(bidirectional long short-term memory, Bi-LSTM)作为预测模型, 使用Panasonic 18650PF数据集作为训练数据. 使用标准Bi-LSTM进行预测时, 平均绝对误差(mean absolute error, MAE)和最大误差(max error, MaxE)分别为0.65%和3.92%, 而在进行特征选择和数据增强后, 模型预测的MAE和MaxE分别为0.47%和2.62%, 表明PI特征工程与高斯数据增强方法可以进一步提升电池荷电状态预测模型的精度.
    2023,32(2):55-62, DOI: 10.15888/j.cnki.csa.008970
    摘要:
    针对人脸表情识别在特征提取时容易丢失大量有用的特征信息, 无法提取更加全面的人脸表情特征的问题, 提出了一种多尺度特征融合网络模型(DS-EfficientNet). 该模型包括深层网络和浅层网络两部分, 浅层网络用来提取面部表情的细节纹理信息, 深层网络提取表情的全局信息. 并在浅层网络中加入注意力机制, 增强对浅层细节信息的提取能力. 最终在通道上进行特征融合, 融合之后网络可以提取更加丰富的人脸表情信息. 为了减少模型参数, 提高模型的泛化性能, 将全连接层替换为全局平均池化层, 加入批归一化. 本文提出的方法在Fer2013和CK+上进行实验, 识别准确率达到了73.47%和98.84%. 实验证明该方法可以提取人脸更加丰富的表情信息, 模型具有更强的泛化能力.
    快速检索
    过刊检索
    全选反选导出
    显示模式:
    优先出版日期:  2023-01-06 , DOI: 10.15888/j.cnki.csa.009024
    摘要:
    输送带纵向撕裂检测是煤矿安全生产的重要问题之一. 针对矿用输送带纵向撕裂检测存在因数据量不足、损伤形态多样化、极致宽高比而导致的检测精度不足、存在误检与漏检等问题, 本文提出一种改进YOLOv4的输送带纵向撕裂检测算法. 首先, 通过数据增强的方式扩充现有数据, 构建输送带纵向撕裂数据集. 其次, 在主干网络之中添加可变形卷积, 增强模型对多样化损伤形态的特征提取能力. 最后, 在特征融合阶段, 引入跨阶段局部网络(CSPNet)结构, 提升模型对极致宽高比的纵向撕裂检测性能, 进一步降低模型的漏检与误检. 实验结果表明, 输送带纵向撕裂检测准确率达到92.5%, F1分数达到93.1%, 基本满足输送带纵向撕裂检测要求.
    优先出版日期:  2023-01-06 , DOI: 10.15888/j.cnki.csa.009047
    摘要:
    针对现有色环电阻识别方法中鲁棒性差、准确率低和运行速度慢等问题, 在MobileNetV3网络的基础上提出了一种轻量级的色环电阻图像识别算法. 首先在自建的色环电阻数据集上进行数据增强以增加样本数量, 提高模型鲁棒性. 然后在瓶颈结构中使用CBAM注意力模块, 增加模型在空间和通道上对特征的细化能力以提高模型准确率. 接着优化分类层, 删掉冗余的升维操作, 在提高准确率的同时减少参数量, 提高模型运算速度. 最后分别针对特征图大小和通道数不相等时添加跳跃连接, 提高模型在深层网络中的特征提取能力, 进一步提高模型准确率. 实验结果表明, 该模型在自建数据集上的识别准确率达到了98%, 可快速准确的对色环电阻进行识别. 该模型能够为电阻自动化识别提供新的技术参考.
    优先出版日期:  2023-01-06 , DOI: 10.15888/j.cnki.csa.009050
    摘要:
    现有基于深度学习的哈希图像检索方法通常使用全连接作为哈希编码层, 并行输出每一位哈希编码, 这种方法将哈希编码都视为图像的信息编码, 忽略了编码过程中哈希码各个比特位之间的关联性与整段编码的冗余性, 导致网络编码性能受限. 因此, 本文基于编码校验的原理, 提出了串行哈希编码的深度哈希方法——串行哈希编码网络 (serial hashing network, SHNet). 与传统的哈希编码方法不同, SHNet将哈希编码网络层结构设计为串行方式, 在生成哈希码过程中对串行生成的前部分哈希编码进行校验, 从而充分利用编码的关联性与冗余性生成信息量更为丰富、更加紧凑、判别力更强的哈希码. 采用mAP作为检索性能评价标准, 将本文所提方法与目前主流哈希方法进行比较, 实验结果表明本文在不同哈希编码长度下的mAP值在3个数据集CIFAR-10、ImageNet、NUS-WIDE上都优于目前主流深度哈希算法, 证明了其有效性.
    优先出版日期:  2023-01-06 , DOI: 10.15888/j.cnki.csa.009051
    摘要:
    布匹瑕疵检测是纺织业质量管理的重要环节. 在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本, 因而价值巨大. 考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性, 提出一种基于轻量级模型的花色布匹瑕疵检测方法并将其部署在嵌入式设备Raspberry Pi 4B上. 首先在一阶段目标检测网络YOLO的基础上用轻量级特征提取网络ShuffleNetV2提取花色布匹瑕疵的特征, 以减少网络结构复杂度及参数量, 提升检测速度; 其次是检测头的解耦合, 将分类与定位任务分离, 以提升模型收敛速度; 此外引入CIoU作为瑕疵位置回归损失函数, 提高瑕疵定位准确性. 实验结果表明, 本文算法在Raspberry Pi 4b上可达8.6 FPS的检测速度, 可满足纺织工业应用需求.
    优先出版日期:  2023-01-06 , DOI: 10.15888/j.cnki.csa.009055
    摘要:
    使用人工势场法进行无人机路径规划时, 往往存在目标不可达、运动轨迹迂回反复和路径长度过长等问题. 传统的人工势场法不能根据环境具体信息对斥力系数进行调整, 而现有的改进方法不能在自适应调整斥力系数的同时兼顾规划效果和规划时长. 针对以上问题, 提出了一种基于深度学习的无人机自适应斥力系数路径规划方法. 首先通过融合遗传算法与人工势场法找出在特定环境下最合适的斥力系数样本集, 其次利用该样本集训练残差神经网络, 最后通过残差神经网络计算适应环境的斥力系数, 进而使用人工势场法进行路径规划. 仿真实验表明, 该方法在一定程度上解决了人工势场法规划中目标不可达、运动轨迹迂回反复和路径长度过长等问题, 规划效果和规划时长方面均有优异表现, 能很好地满足无人机路径规划中对当前环境的自适应要求和快速规划的要求.
    优先出版日期:  2023-01-06 , DOI: 10.15888/j.cnki.csa.009044
    摘要:
    针对污水处理过程中化学需氧量(chemical oxygen demand, COD)难以在线测量的问题, 提出了一种基于径向基函数(radial basis function, RBF)神经网络的软测量模型. 首先, 用污水处理厂实测数据挑选出与COD相关的过程变量作为输入变量; 其次, 基于RBF神经网络建立出水COD软测量模型, 利用自适应遗传算法改进的麻雀搜索算法(adaptive genetic algorithm improved sparrow search algorithm, AGAISSA)优化RBF神经网络的中心值、宽度值以及权值, 通过改进麻雀位置更新公式以及引入遗传算法中的自适应交叉和变异操作保证了软测量模型的精度; 最后, 将RBF神经网络的软测量模型应用于污水处理厂实测数据加以验证, 结果表明: AGAISSA优化RBF神经网络模型能够对出水COD进行准确的预测, 具有较高的预测精度.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009045
    摘要:
    为了将水清洗机接入工业网络并实现智能自动化控制, 本文提出了一种基于统计过程控制(SPC)可重构程序的水清洗控制系统. 该系统根据水清洗设备的参数和组件特性构建了该设备的控制协议; 根据协议指令制定了指令判断模块; 根据SPC理论设计了过程控制模块. 控制协议让该系统的清洗程序具有重构和联网的功能; 指令判断模块为重构后的指令提供了安全性保障; 过程控制模块让该系统的清洗过程具备动态调整清洗组件的功能. 这些功能使得该设备可以实现智能自动化控制. 通过测试, 该系统比原有系统的清洗次数平均减少了15%, 水清洗液的使用率提升了约5%, 并扩展了3项功能, 提高了设备的利用率和智能化水平, 最终满足节能省水、多用途和联网的需求.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009033
    摘要:
    近端策略优化(proximal policy optimization, PPO)是一种稳定的深度强化学习算法, 该算法的关键点之一是使用裁切后的代理目标限制更新步长. 实验发现当使用经验最优的裁切系数时, KL散度 (Kullback-Leibler divergence)无法被确立上界, 这有悖于置信域优化理论. 本文提出一种改进的双裁切近端策略优化算法(proximal policy optimization with double clipping boundaries, PPO-DC). 该算法通过基于概率的两段裁切边界调整KL散度, 将参数限制在置信域内, 以保证样本数据得到充分利用. 在多个连续控制任务中, PPO-DC算法取得了好于其他算法的性能.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009040
    摘要:
    车辆轨迹预测能够有效降低车辆轨迹突变造成的碰撞风险, 是实现安全驾驶的关键技术之一. 针对传统轨迹预测算法缺乏对驾驶员意图分析的问题, 本文提出了一种融合生成对抗网络和驾驶意图识别的车辆轨迹预测模型. 该模型基于生成对抗网络框架预测车辆轨迹, 并引入基于深度神经网络的变道意图识别模块识别驾驶员的变道意图.通过在公开数据集NGSIM上与LSTM、S-LSTM、CS-LSTM和S-GAN模型进行对比试验, 实验结果表明与其他轨迹预测模型相比, 本文提出的CS-DNN-GAN模型具有较好的预测精确度.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009043
    摘要:
    语音文本自动对齐技术广泛应用于语音识别与合成、内容制作等领域, 其主要目的是将语音和相应的参考文本在语句、单词、音素等级别的单元进行对齐, 并获得语音与参考文本之间的时间对位信息. 最新的先进对齐方法大多基于语音识别, 一方面, 准确率受限于语音识别效果, 识别字错误率高时文语对齐精度明显下降, 识别字错误率对对齐精度影响较大; 另一方面, 这种对齐方法不能有效处理不完全匹配的长篇幅语音和文本的对齐. 该文提出一种基于锚点和韵律信息的文语对齐方法, 通过基于边界锚点加权的片段标注将语料划分为对齐段和未对齐段, 针对未对齐段使用双门限端点检测方法提取韵律信息, 并检测语句边界, 降低了基于语音识别的对齐方法对语音识别效果的依赖程度. 实验结果表明, 与目前先进的基于语音识别的文语对齐方法比较, 即使在识别字错误率为0.52时, 该文所提方法的对齐准确率仍能提升45%以上; 在音频文本不匹配程度为0.5时, 该文所提方法能提高3%.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009032
    摘要:
    时变图连通分量已经被广泛应用到不同场景, 如交通路网建设、推荐系统的信息推送等. 然而当前多数连通分量求解方法忽视了NUMA体系结构对计算效率产生的影响, 即过高的远程内存访问延迟导致低下的算法执行效率. 本文针对时变图的弱连通分量求解问题, 提出一种基于NUMA延迟发送的时变图弱连通分量求解方法, 它通过合理的数据内存布局, 合理控制NUMA节点间的信息交换次数, 最大限度减少远程内存访问数量, 显著提高了算法执行效率. 实验结果表明, 该方法的性能明显优于当前流行的图处理系统Ligra和Polymer提供的方法.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009028
    摘要:
    针对传统的胸部辅助诊断系统在胸部X光片疾病分类方面图像特征提取效果差、平均准确率低等问题, 提出了一个注意力机制和标签相关性结合的多层次分类网络. 网络的训练分为两个阶段, 在阶段1为了提高网络特征提取能力, 引入注意力机制并构建一个双分支特征提取网络, 实现综合特征的提取, 在阶段2考虑到多标签分类中标签之间相关性等问题, 利用图卷积神经网络对标签相关关系进行建模, 并与阶段1的特征提取结果进行结合, 以实现对胸部X光片疾病的多标签分类任务. 实验结果表明, 本方法在ChestX-ray14数据集上各类疾病的加权平均AUC达到0.827, 有助于辅助医生进行胸部疾病的诊断, 有一定的临床应用价值.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009022
    摘要:
    针对可见光模态与热红外模态间的差异问题和如何充分利用多模态信息进行行人检测, 本文提出了一种基于YOLO的多模态特征差分注意融合行人检测方法. 该方法首先利用YOLOv3深度神经网络的特征提取主干分别提取多模态特征; 其次在对应多模态特征层之间嵌入模态特征差分注意模块充分挖掘模态间的差异信息, 并经过注意机制强化差异特征表示进而改善特征融合质量, 再将差异信息分别反馈到多模态特征提取主干中, 提升网络对多模态互补信息的学习融合能力; 然后对多模态特征进行分层融合得到融合后的多尺度特征; 最后在多尺度特征层上进行目标检测, 预测行人目标的概率和位置. 在KAIST和LLVIP公开多模态行人检测据集上的实验结果表明, 提出的多模态行人检测方法能有效解决模态间的差异问题, 实现多模态信息的充分利用, 具有较高的检测精度和速度, 具有实际应用价值.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009007
    摘要:
    电力监控系统是电力行业最重要的生产管理系统. 作为电力监控系统的重要组成部分, 缺少电网约束力的用户站将会成为网络攻击的重要目标. 为及时感知用户站侧网络攻击事件, 提出了一种结合用户站侧随机域名实时检测和主动防御的方法. 使用胶囊网络(CapsNet)结合长短期记忆网络(LSTM)对流量数据中提取的域名进行二分类, 当检测到随机域名时, 通过远程终端协议(Telnet)对路由器和交换机下发指令更新其安全策略或关闭路由器和交换机的业务接口以阻断网络攻击. 实验结果表明, 使用CapsNet结合LSTM分类算法在随机域名检测中准确率达到99.16%, 召回率达到98%, 通过Telnet协议可以联动路由器和交换机在不中断业务的情况下做出主动防御.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009011
    摘要:
    为了解决网络应用身份认证问题, OAuth2.0协议在实际生产环境中得到了非常广泛的应用. 但很多系统在设计时不合理使用OAuth2.0标准、产生很多安全漏洞. 分析了近年来关于OAuth2.0协议出现的安全问题, 包括中间人攻击, 授权劫持漏洞和CSRF漏洞, 针对这些安全问题提出了一种基于口令的Schnorr数字签名和OAuth2.0的强身份认证方案. 最后对该方案进行安全性分析, 结果表明该方案具有良好的安全性且易于使用.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009038
    摘要:
    在科技发达和信息爆炸的时代, 如何从海量数据中准确地提取所需信息已成为人们研究的目标. 问答系统作为解决此问题的重要途径之一, 其主要通过对已有数据信息进行检索和分析, 并最终返回问题答案或其他相关信息. 近年来, 深度学习的革命性发展给问答系统带来了长足的进步, 序列到序列的模型, 端到端的模型以及最近流行的预训练, 都给问答系统留下无限的发展空间, 但其仍面临许多挑战. 本文首先对问答系统的发展进行简要介绍, 接着将问答系统按照3个不同角度进行分类, 并对相关数据集、评测指标和各类问答系统的主流技术进行阐述, 最后对问答系统面临的问题和未来的发展趋势进行讨论.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009039
    摘要:
    综合考虑混合式学习成绩分类预测中数据存在不平衡性和稀疏性的特点, 提出了一种SMOTE-XGBoost-FM混合式学习成绩分类预测模型. 首先通过SMOTE采样均衡数据集; 针对数据稀疏性问题, 使用XGBoost对采样后的数据进行特征交叉, 然后对所生成树的叶子节点进行独热编码, 以生成高阶特征数据, 最后将其输入因子分解机(FM)进行迭代训练以获最优模型. 实验结果表明, SMOTE-XGBoost-FM模型在混合式学习成绩分类预测中准确率达到了92.7%, 相较于单一的XGBoost、FM模型分别提升了5.7%和11.7%, 能有效对学生学习情况进行分类预测, 为提高教学效果提供参考.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009027
    摘要:
    视频显著性目标检测需要同时结合空间信息和时间信息, 连续地定位视频序列中与运动相关的显著性目标, 其核心问题在于如何高效地刻画运动目标的时空特征. 现有的视频显著性目标检测算法大多使用光流, ConvLSTM以及3D卷积等提取时域特征, 缺乏对时间信息的连续学习能力. 为此, 设计了一种鲁棒的时空渐进式学习网络(spatial-temporal progressive learning network, STPLNet), 以完成对视频序列中显著性目标的高效定位. 在空间域中使用一种U型结构对各视频帧进行编码解码, 在时间域中通过学习视频序列中帧间运动目标的主体部分和形变区域特征, 渐进地对运动目标特征进行编码, 能够捕捉到目标的时间相关性特征和运动趋向性. 在4个公开数据集上与13个主流的视频显著性目标检测算法进行一系列对比实验, 所提出的模型在多个指标(maxF, S-measure (S), MAE)上达到了最优结果, 同时在运行速度上具有较好的实时性.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009031
    摘要:
    深度学习是目前路面图像裂缝检测的主流方法, 但是需要大量人工标注的真值图进行训练, 而现实中获取人工标注的真值图既费时又费力, 本文提出一种基于改进的生成对抗网络的路面图像裂缝检测方法, 将路面图像裂缝检测问题视为一类基于图像跨域转换的异常检测问题, 采用定点生成对抗网络将裂缝图像无监督自动转换为与之一一对应的无裂缝图像, 进而将原图像与生成图像进行差分, 差分图中的显著目标对应裂缝检测结果. 在公开数据集CrackIT上的测试结果表明, 本文方法在不依赖于人工标注的真值图条件下能够实现裂缝的精准检测, 本文方法在准确率、召回率、F1分数上取得了与有监督深度学习方法相当的性能.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009002
    摘要:
    容器虚拟化技术由于轻量级的特性逐渐在云计算中崭露头角. 容器热迁移是许多云管理能力的基础, 其在最短的宕机时间内, 将运行中的容器完整地迁移到另一个物理节点上继续运行. 性能是容器热迁移研究的重点, 但通过对现有容器热迁移系统的详细分析, 本文发现其中仍然存在着一些影响性能的问题, 包括转储并行度低、预拷贝策略不收敛以及根文件系统与运行状态迁移并行度低等. 针对这些问题, 本文分别提出和设计了资源感知的并行转储机制、基于后拷贝策略的运行状态迁移和基于多优先级的传输调度并行算法等优化策略和算法, 并基于Docker实现了一个高性能容器热迁移系统Dmigrate. 实验结果表明Dmigrate相比于目前最新的研究, 平均可有效减少17.05%的宕机时间, 总迁移时间平均减少24.33%.
    优先出版日期:  2022-12-23 , DOI: 10.15888/j.cnki.csa.009010
    摘要:
    医学图像对疾病的诊断、治疗和评估均有所帮助, 准确分割医学图像中的器官对于辅助医生的诊断具有重要的实际意义. 由于医学图像中各器官部位与周围组织的图像对比度低, 不同器官的边缘和形状也会存在很大差异, 从而增加了分割的难度. 针对这些问题, 本文提出了一种基于卷积神经网络和Transformer的医学图像语义分割网络, 有效提高了医学图像语义分割的精度. 特征提取部分使用ResNet-50网络结构, 在特征提取后使用Transformer模块来扩大感受野. 在上采样过程中加入多个跳跃连接层, 充分利用各阶段的特征提取信息, 来恢复至与输入图像相近的分辨率. 在胃肠道医学图像分割数据集上的实验结果证明本文的方法可以有效分割医学图像中的器官组织, 提升分割准确率.
    优先出版日期:  2022-12-16 , DOI: 10.15888/j.cnki.csa.009013
    摘要:
    随着智慧物联体系的发展, 物联网中应用程序的种类与数量不断增加. 在移动边缘计算(mobile edge computing, MEC)中, 通过允许移动用户将任务卸载至附近MEC服务器以加快移动应用程序的速度. 本文通过考虑不同任务属性、用户的移动性和时间延迟约束模拟移动边缘场景. 根据用户移动轨迹, 将目标建模为寻找满足时延约束条件且在卸载过程中产生最小能耗MEC服务器优化模型, 并提出一种最小能耗卸载算法求解该问题的最优解. 仿真结果表明, 在约束条件下, 提出的算法可以找到在用户移动轨迹中产生最小能耗的MEC服务器, 并显著降低任务卸载过程的能耗与时延, 提高应用程序服务质量.
    优先出版日期:  2022-12-16 , DOI: 10.15888/j.cnki.csa.009008
    摘要:
    在图像的采集过程中, 图像往往会带有一定的噪声信息, 这些噪声信息会破坏图像的纹理结构, 进而干扰语义分割任务. 现有基于带噪图像的语义分割方法, 大都是采取先去噪再分割的模型. 然而, 这种方式会导致在去噪任务中丢失语义信息, 从而影响分割任务. 为了解决该问题, 提出了一种多尺度多阶段特征融合的带噪图像语义分割的方法, 利用主干网络中各阶段的高级语义信息以及低级图像信息来强化目标轮廓语义信息. 通过构建阶段性协同的分割去噪块, 迭代协同分割和去噪任务, 进而捕获更准确的语义特征. 在PASCAL VOC 2012和Cityscapes数据集上进行了定量评估, 实验结果表明, 在不同方差的噪声干扰下, 模型依旧取得了较好的分割结果.
    优先出版日期:  2022-12-16 , DOI: 10.15888/j.cnki.csa.009021
    摘要:
    针对疫情防控下人脸识别应用出现人脸漏检、移动端平台的计算能力不足和硬件资源受限等问题, 提出一种YOLOv5改进的轻量级口罩人脸检测模型. 设计轻量化的C3Ghost模块替换原网络中的C3模块以压缩卷积过程的计算量和模型大小, 在主干网络中添加注意力机制以提高网络的特征提取能力, 并改进边框回归损失函数以提高检测速度和精度. 实验结果表明, 改进后的模型计算量和参数量分别降低了29.79%和33.33%, 模型权重文件大小仅有2.8M, 减轻了对硬件条件的依赖, 同时模型的检测率达到了96.6%, 相比现有轻量级模型优势突出, 能够有效的应用于人脸识别之中.
    优先出版日期:  2022-12-16 , DOI: 10.15888/j.cnki.csa.009019
    摘要:
    工厂环境复杂多变, 存在很多危险区域, 违规进入会给工人的生命健康带来严重的危害. 针对传统的检测方法操作复杂、识别效果差, 提出了一种基于改进YOLOv5s模型的危险区域工人入侵警报系统. 首先将基于SGBM算法双目测距技术融合进YOLOv5s目标检测中, 增加空间距离这一触发条件, 使得工人只有走近摄像头一定范围内才会触发声光报警. 进一步地, 在YOLOv5s中引入注意力机制, 通过对比实验证明了CA模块的引入对模型的平均准确率mAP0.5提升最明显为1.86%. 结果显示此方法能够较为准确的识别出工人是否进入危险区域, 并进行声光报警, 提醒工人注意, 为工厂安全管理提供了新的手段.
    优先出版日期:  2022-12-16 , DOI: 10.15888/j.cnki.csa.008983
    摘要:
    风能作为清洁能源为改善我国能源结构发挥着越来越重要的作用. 风电场机组及设备的数据可能会包含机组或风场的隐私敏感信息, 这些隐私数据一旦被泄露, 将会为风电场带来巨大的经济风险和法律风险. 联邦学习作为重要的隐私计算手段, 能够保证原始数据不出本地的情况下完成模型的建模和推理, 实现各参与方在互不泄露隐私的前提下实现联合计算, 从而有效应对风电数据分析面临的挑战. 但是, 联邦学习计算过程中存在大量的通信开销, 这成为限制联邦学习技术在风电场景下应用的关键性能瓶颈. 因此, 本文以经典的联邦学习算法XGBoost为例, 深入分析了联邦学习计算过程中的通信问题, 提出采用RDMA作为底层传输协议的解决方案, 设计并实现了一套高性能联邦学习平台通信库, 有效提升了联邦学习系统的性能.
    优先出版日期:  2022-12-09 , DOI: 10.15888/j.cnki.csa.008998
    摘要:
    在异构Hadoop集群场景中, 为了缓和由于纠删码和副本存储模式混合使用, 以及服务器节点本身实时算力差异造成的MapReduce作业处理效率低下的问题, 本文实现了一种根据数据存储情况和节点实时负载来在多并发场景下动态调节MapReduce作业任务分配情况的调度策略. 该策略通过修改当前Hadoop框架中的数据存储选址策略并对节点任务并发量进行动态控制, 在多作业并发时实现更加均衡的作业间资源分配. 实验结果表明, 相较于Hadoop默认的两种作业调度策略, 本文提出的调度模式能够将作业完成时间缩短约17%, 并有效避免部分作业面临的饥饿现象.
    优先出版日期:  2022-12-09 , DOI: 10.15888/j.cnki.csa.008999
    摘要:
    气象大数据云平台(简称“天擎”)作为省级气象业务的核心系统, 需要保持7×24小时不间断的稳定、高效运行. 针对“天擎”系统运行模块多、处理任务多且复杂, 传统的人工监控模式监控效率低且无法及时发现业务中存在的故障等问题, 本文采用Java、Python和Bash shell语言开发了基于企业微信的“天擎”业务全流程监控告警系统, 该系统通过对“天擎”各个模块业务运行过程中所产生的综合状态信息等进行采集并格式化为监控告警信息, 最终通过企业微信推送至运维人员, 实现了对“天擎”各业务运行模块运行状态的快捷感知. 系统业务运行效果表明, 该系统运行安全可靠稳定, 能够帮助运维人员及时定位系统故障并提高故障处理效率, 在“天擎”数据监控和运行保障方面取得了良好的应用效果.
    优先出版日期:  2022-12-09 , DOI: 10.15888/j.cnki.csa.009041
    摘要:
    近年, 情绪识别研究已经不再局限于面部和语音识别, 基于脑电等生理信号的情绪识别日趋火热. 但由于特征信息提取不完整或者分类模型不适应等问题, 使得情绪识别分类效果不佳. 基于此, 本文提出一种微分熵(DE)、卷积神经网络(CNN)和门控循环单元(GRU)结合的混合模型(DE-CNN-GRU)进行基于脑电的情绪识别研究. 将预处理后的脑电信号分成5个频带, 分别提取它们的DE特征作为初步特征, 输入到CNN-GRU模型中进行深度特征提取, 并结合Softmax进行分类. 在SEED数据集上进行验证, 该混合模型得到的平均准确率比单独使用CNN或GRU算法的平均准确率分别高出5.57%与13.82%.
    优先出版日期:  2022-12-09 , DOI: 10.15888/j.cnki.csa.009042
    摘要:
    为了进一步提高空气质量指数预测精度, 提出一种混合遗传蚁群算法优化BP神经网络的方式对空气质量指数进行预测. 首先初始化蚁群算法的信息素分布, 对不满足适应度条件的进行遗传算法的交叉、变异操作, 进而计算蚁群的状态转移概率和信息素浓度, 当适应度值满足条件要求时, 将寻优结果作为BP神经网络的最优权值和阈值, 来改善单一BP神经网络的不足. 最后通过运用西安市的空气质量指数日历史数据进行验证, 实验表明, 本文所提模型的各个评价指标相对其他对比模型误差更小, 在预测精度方面具有更高的说服力, 因此能够有效地预测空气质量指数.
    优先出版日期:  2022-12-09 , DOI: 10.15888/j.cnki.csa.009029
    摘要:
    深度神经网络的对抗鲁棒性研究在图像识别领域具有重要意义, 相关研究聚焦于对抗样本的生成和防御模型鲁棒性增强, 但现有工作缺少对其进行全面和客观的评估. 因而, 一个有效的基准来评估图像分类任务的对抗鲁棒性的系统被建立. 本系统功能主要为榜单评测展示、对抗算法评测以及系统优化管理, 同时利用计算资源调度和容器调度保证评测任务的进行. 本系统不仅能够为多种攻击和防御算法提供动态导入接口, 还能够从攻防算法的相互对抗过程中全方面评测现有算法优劣性.
    优先出版日期:  2022-12-09 , DOI: 10.15888/j.cnki.csa.009025
    摘要:
    在无人机路径规划问题中, 传统算法存在计算复杂与收敛慢等缺点, 粒子群优化算法(PSO)得益于其算法原理简单、通用性强、搜索全面等特性, 现多用于无人机航路规划. 然而, 常规PSO算法容易陷入局部最优, 本文在优化调整自适应参数的基础上综合引入全局极值变异与加速度项, 以平衡全局和局部搜索效率, 避免种群陷入“早熟”. 对基准测试函数进行测试的结果表明, 本文所提改进PSO算法收敛速度更快, 精度更高. 在实例验证部分, 首先提取飞行场景特征, 结合无人机性能约束, 进行环境建模; 然后将多项运行约束和期望的最小化飞行时间均转化为罚函数, 以最小化罚函数作为目标, 构建无人机飞行任务场景下的航路规划模型, 并利用本文所提改进粒子群算法进行求解, 最后通过对比仿真验证了改进粒子群算法的高效性和实用性.
    优先出版日期:  2022-12-09 , DOI: 10.15888/j.cnki.csa.009017
    摘要:
    为解决火焰图像识别在边缘设备, 移动端设备环境下模型体积大, 准确率低, 实时性能差的问题. 首先选取ShuffleNetV2作为轻量化主干神经网络, 保证模型的实时性; 其次, 设计了一种新的注意力模块SCDAM (space and channel dual attention module)去同时考虑通道和空间的关联性, 针对不同特征的重要程度去赋予不同权重并有效提高模型精度; 然后, 设计了一种多尺度特征融合模块, 使提取到的特征在空间尺度上更加丰富, 加强网络对不同尺度的适应性; 最后将SCDAM模块以及多尺度模块引入到ShuffleNetV2中并利用迁移学习方式优化模型参数, 进一步提高模型精度. 在参数量和计算量仅有微量增加的情况下, 本算法的精度比ShuffleNetV2提升了3.2%, 且单次推理速度仅耗时8.7 ms. 实验证明, 该算法更加适合应用在计算资源有限情况下, 如火药火焰的识别与监控.
    优先出版日期:  2022-12-09 , DOI: 10.15888/j.cnki.csa.009000
    摘要:
    针对在检测火焰和烟雾的火灾检测过程中存在火灾初期小目标难以检测的情况, 本文提出了一种基于自然指数损失(eCIoU)的改进YOLOX-nano (ASe-YOLOX-nano)目标检测算法. 首先, 提出一种新的目标检测函数eIoU损失函数来替代传统IoU损失, 解决在检测小目标时预测框和真实框易出现无交集的情况, 及无法反应宽高影响等问题. 其次, 在网络模型中引入注意力模块, 在网络初期模糊定位目标位置, 提高网络后期对目标尤其是小目标检测的准确性. 此外, 本文还采用软池化空间金字塔池化结构提取不同尺寸的空间特征信息, 可以提升模型对于空间布局和物体变性的鲁棒性, 因此目标较小时也可以提取充足的特征, 采用Mosaci增强技术预处理数据集, 提升模型的泛化能力, 以此进一步提高网络性能. 通过目标数据集进行对比验证, 其结果显示, mAP指标达到70.07%, 比原模型提高了3.46%, 火焰的准确率达到84.66%, 烟雾的达到74.56%, FPS能够稳定在73, 相对于传统YOLOX-nano算法拥有更好的火灾检测能力.
    优先出版日期:  2022-12-09 , DOI: 10.15888/j.cnki.csa.008997
    摘要:
    传统的三维密集字幕方法存在未充分考虑上下文信息、点云特征信息丢失以及隐藏状态信息量单一等问题. 为了应对这些挑战, 提出了多层级上下文投票网络, 该网络在投票过程中使用自注意力机制捕获点云的上下文信息并加以多层级利用, 提升检测对象的准确率. 同时, 还设计了隐藏状态-注意力时序融合模块, 将当前时刻隐藏状态融合与前一时刻注意力结果融合, 丰富隐藏状态信息量, 从而提高模型表达能力. 除此之外, 采用“两阶段”训练方法, 有效过滤掉生成的低质量对象提案, 增强描述效果. 在官方数据集ScanNet和ScanRefer上的大量实验表明, 该方法与基线方法相比取得了更有竞争力的结果.
    优先出版日期:  2022-12-06 , DOI: 10.15888/j.cnki.csa.009006
    摘要:
    老年认知障碍逐渐成为影响老年人生活质量的主要威胁之一, 但是目前针对老年认知障碍群体的预防措施、诊疗技术、医养模式等尚不成熟, 并且缺少能够完整地、分门别类地存储医疗数据的老年认知障碍数据系统, 这便导致了老年认知障碍诊断不准确、认知障碍患者治疗时机延误、认知障碍患者没有得到相应的医养服务等问题. 针对以上问题, 本文设计了一种基于B/S架构的老年认知障碍多维度数据管理系统, 利用FastDFS分布式文件存储系统的功能, 保障了系统数据的安全性和稳定性. 利用递归树结构帮助提取表格数据, 加快筛查速度. 系统的兼容性好, 能够在目前主流的浏览器下稳定运行.
    优先出版日期:  2022-12-06 , DOI: 10.15888/j.cnki.csa.009001
    摘要:
    为解决水面垃圾检测中存在目标形状尺度差异大, 难以区分背景以及目标偏小的问题, 本文提出了一种SPMYOLOv3目标检测算法来实现对水面垃圾的检测. 首先, 对收集到的水面垃圾数据集进行标注, 使用改进的K-means算法对数据集重新聚类, 得到与数据集更匹配的先验框. 其次, 在YOLOv3的主干网络后添加SE-PPM模块, 加强目标的特征信息, 保证目标尺度不变且保留全局信息. 再使用多向金字塔网络对不同尺度的特征图进行融合, 获得携带更加丰富的上下文信息的特征图. 最后使用在损失函数中使用focal loss计算负样本的置信度损失, 抑制了YOLOv3中正负样本不均衡问题. 改进后的算法在水面垃圾数据集上的实验结果表明, 相比于原YOLOv3算法检测精度提升了3.96%.
    优先出版日期:  2022-12-06 , DOI: 10.15888/j.cnki.csa.009016
    摘要:
    基于图神经网络的推荐算法通过从图中获取知识生成节点的特征表示, 提高了推荐结果的可解释性. 然而, 随着推荐系统原始数据规模的不断扩大, 大量包含语义信息的文本数据没有得到有效利用. 同时图神经网络在融合图中邻居信息时没有区分关键节点, 使得模型难以学习到高质量的实体特征, 进而导致推荐质量下降. 本文将图神经网络与语义模型相结合, 提出一种融合语义信息与注意力的图神经网络推荐算法. 该算法基于SpanBERT语义模型处理实体相关的文本信息, 生成包含语义信息的特征嵌入, 并将注意力机制引入到基于用户社交关系以及用户-项目交互的影响传播融合过程中, 从而实现用户和项目两类实体特征的有效更新. 在公开数据集上的对比实验结果表明, 本文所提出的方法较现有基准方法在各项指标上均有所提升.
    优先出版日期:  2022-12-02 , DOI: 10.15888/j.cnki.csa.009020
    摘要:
    相对于传统的物流仓库来说, 现在很多的自动化仓库不再使用工人去分拣货物, 而是使用自动引导车完成货物的分拣, 将“从人到货”的工作模式变为“从货到人”, 这种工作模式的转变, 不仅解放了工人的劳动力, 同时还实现了自动化仓库的机械化与自动化的结合, 大幅度地提升工作效率. 自动引导车在自动化仓库分拣货物的过程中一个重要的环节就是路径规划问题. 针对仓库中自动引导车的路径规划问题, 对传统的A*算法提出改进. 传统A*算法规划出来的路线具有路径过长、转折角度较大、路径不够平滑的缺陷. 针对以上缺陷, 提出动态加权以及改变搜索邻域的方法对传统A*算法进行改进, 因此减少了搜索节点, 提高了搜索速度. 同时多次使用高阶贝塞尔曲线对改进后的A*算法规划出来的路线进行平滑处理, 减少了转折点. 最后进行3组仿真实验对比, 证实本文提出的改进是有参考价值的.
    优先出版日期:  2022-12-02 , DOI: 10.15888/j.cnki.csa.008985
    摘要:
    从有限自动机中生成简短、可读性强的正则表达式是计算机理论研究中的一个重大课题. 在经典的正则表达式生成算法中, 状态序列是影响正则表达式质量的关键因素. 为了能够快速高效的找到较优的状态序列, 本文以食肉植物算法的理论为核心, 并结合其它启发式算法的思想进行设计与优化, 提出了一种基于食肉植物算法的状态序列搜索方法. 通过实验将此方法与已有的一些使用启发式规则的搜索算法进行了对比, 实验结果表明, 基于食肉植物算法的状态序列搜索方法优于其他启发式算法, 生成的正则表达式长度比起其他启发式算法明显缩短, 如跟DM算法相比, 长度的缩短幅度可以随着自动机阶数的增加达到20%以上, 跟随机序列算法相比, 可以把长度缩短多个数量级.
    优先出版日期:  2022-12-02 , DOI: 10.15888/j.cnki.csa.008986
    摘要:
    近年来, 数字人文受到广泛关注, 数字人文环境下的词命名实体识别研究日渐兴起, 但鲜有研究从字特征的特征表示能力、分词的准确性、领域知识的有效性等方面进行探究. 鉴于此, 针对汉字的象形文字特点和词文本的特殊性, 在字特征的基础上, 引入部首特征、格律特征和声韵特征, 提出特征增强单元和特征抽取单元, 并将词牌知识三元组通过ANALOGY得到的知识向量表示为词牌知识向量, 通过双向长短时记忆网络、注意力机制等模型将部首向量、字向量、格律向量、声韵向量、词牌知识向量进行深度融合, 最终构建出融入多特征的词命名实体识别方法. 在《花间集全译》自制语料上的对比实验和消融实验的结果表明, 本文所提方法能够有效利用多特征提升词命名实体识别性能. 其F1值达到了85.63%, 完成了词命名实体识别任务.
    优先出版日期:  2022-12-02 , DOI: 10.15888/j.cnki.csa.008976
    摘要:
    旅行商问题作为组合优化研究中最具挑战的问题之一, 自被提出以来就引起了学术界的广泛关注并提出了大量的方法来解决它. 蚁群算法是求解复杂组合优化问题的一种启发式仿生进化算法, 是求解旅行商问题的有效手段. 本文分别介绍蚁群算法中几个有代表性的算法, 综述了蚁群算法的改进、融合和应用的文献研究进展, 以评价近年来不同版本的蚁群算法为解决旅行商问题的发展和研究成果, 并针对改进蚁群算法结构框架、算法参数的设置及优化、信息素优化和混合算法等方面, 对现被提出的改进算法进行了分类综述. 对蚁群算法在未来对旅行商问题及其他不同领域的研究内容和研究热点的进一步发展提供了展望和依据.
    优先出版日期:  2022-11-29 , DOI: 10.15888/j.cnki.csa.008967
    摘要:
    实体对齐旨在找到位于不同知识图谱中的等效实体, 是实现知识融合的重要步骤. 当前主流的方法是基于图神经网络的实体对齐方法, 这些方法往往过于依赖图的结构信息, 导致在特定图结构上训练得到的模型不能拓展应用于其他图结构中. 同时, 大多数方法未能充分利用辅助信息, 例如属性信息. 为此, 本文提出了一种基于图注意力网络和属性嵌入的实体对齐方法, 该方法使用图注意力网络对不同的知识图谱进行编码, 引入注意力机制从实体应用到属性, 在对齐阶段将结构嵌入和属性嵌入进行结合实现实体对齐效果的提升. 在现实世界的3个真实数据集上对本文模型进行了验证, 实验结果表明提出的方法在很大程度上优于基准的实体对齐方法.
    优先出版日期:  2022-11-29 , DOI: 10.15888/j.cnki.csa.008972
    摘要:
    船牌号的检测和识别对于港口的智能化管理和解决传统人工方式监管渔船中存在的耗时耗力的问题具有重要意义. 针对船牌悬挂位置, 背景颜色和字符个数不统一等特点, 本文提出两阶段双模型的检测和识别方法. 首先, 提出将双路径网络(dual path networks, DPN)与可微二值化网络(differentiable binarization network, DBNet)相结合的DP-DBNet船牌号位置检测模型. 其次, 提出将多头注意力机制(multi-head-attention mechanism, MHA)与改进的卷积循环神经网络(convolutional recurrent neural network, CRNN)相结合的MHA-CRNN船牌号文字识别模型. 最后, 以烟台芝罘区新型现代化智慧渔港项目为数据来源, 并进行算法对比实验分析; 实验结果表明, 两种模型结合的两阶段识别方法可以使船牌号的识别准确率达到76.39%, 充分证明了该模型的有效性和在海洋港口管理方面的应用价值.
    优先出版日期:  2022-11-29 , DOI: 10.15888/j.cnki.csa.008990
    摘要:
    针对目前城市马拉松路线人工规划效率低下的问题, 本文采用贪心和回溯算法进行城市马拉松路线智能规划, 具体方法是: 通过城市路网信息构建由经纬度坐标点拓扑关系连接而成的路网, 采用贪心和回溯算法对坐标点进行遍历搜索, 结合城市马拉松路线特殊要求, 运用直接逼近、启发式远离、启发式靠近和方向预估等策略实现路线的智能规划. 在此基础上, 提出一种综合POI热度值、道路宽度适宜度、路线畅通指数、过弯舒适度以及POI密集度5个维度的马拉松路线评估方法. 最后, 开展了北京、合肥马拉松人工和智能规划路线对比分析, 结果表明所采用的方法可快速高效实现马拉松路线规划.
    优先出版日期:  2022-11-29 , DOI: 10.15888/j.cnki.csa.008991
    摘要:
    为了实现灰度图像增强最佳参数的自动寻优, 提出一种改进飞鼠搜索算法的自适应图像增强方法. 在普通树上的飞鼠位置更新中引入双向搜索策略, 提高获得最好解的可能性; 利用螺旋觅食策略更新位于橡子树上的飞鼠位置, 提升算法的收敛速度和搜索精度. 在CEC 2017测试集上, 将所提算法BCSSA与蝙蝠算法、鲸鱼优化算法、基本的SSA和2种改进的SSA进行对比分析, 结果表明, BCSSA具有更高的稳定性和更快的收敛速度. 最后, 将所提出的BCSSA应用于灰度图像增强, 与经典的直方图均衡化方法和SSA进行了四种评价指标的性能比较, 证明了BCSSA的优越性.
    优先出版日期:  2022-11-29 , DOI: 10.15888/j.cnki.csa.009003
    摘要:
    银行客户申请信用贷款在授信通过后, 精准预测客户是否用信及分析影响客户用信的关键因素, 对提高银行客户服务能力及盈利能力具有重要意义. 目前, 机器学习算法鲜有在用信预测方面的应用, 且金融用信领域缺乏模型可解释性的研究, 为此提出一种基于CatBoost的TreeSHAP解释性用信预测模型. 通过CatBoost构建用信预测模型, 利用3种超参数优化算法对该模型进行对比优化, 与基线模型在4项主要性能指标上进行实验对比, 结果表明经TPE算法优化后的模型性能均优于其他模型, 然后结合TreeSHAP方法从全局和局部的层面增强模型的可解释性, 解释性分析客户用信的影响因素, 为银行对客户进行精准化营销提供决策依据.
    优先出版日期:  2022-11-29 , DOI: 10.15888/j.cnki.csa.009009
    摘要:
    为了快速有效地从热像仪采集的温度数据中识别出电机的运行故障, 本文根据随机失活、非线性小波变换系数增强(NLWTCE)和卷积神经网络算法相结合对电机图像进行识别. 首先根据热像仪采集的数据建立电机的图像数据集, 通过非线性小波变换(NLWT)将数据进行图像增强, 然后构建改进的卷积神经网络(ICNN)模型, 将提取的特征作为最终的识别特征来进行图像识别, 最后根据与正常电机图像作比较, 识别出故障的电机图像, 实现了有效、准确的识别故障电机图像与正常电机图像. 实验结果表明, 改进的卷积神经网络模型不仅具有较高的识别准确率, 也进一步简化了提取图像特征的复杂过程. 该方法的有效性和合理性得到了验证, 并适用于工程运用中.
    优先出版日期:  2022-11-29 , DOI: 10.15888/j.cnki.csa.009012
    摘要:
    广播式自动相关监视(ADS-B)是民航新一代空中交通管理系统的重要组成部分, 由于协议没有数据加密和认证, 导致容易受到数据攻击. 为了准确检测ADS-B数据攻击, 基于ADS-B数据的时序性, 提出了一种基于注意力机制的卷积神经网络-长短期记忆网络(convolutional neural networks-long short-term memory, CNN-LSTM)异常数据检测模型. 首先, 利用CNN提取ADS-B数据的特征, 然后以时序形式将特征向量输入到LSTM中, 最后使用注意力机制进行网络参数优化, 实现对ADS-B数据的预测, 通过计算预测误差, 来进行异常检测. 实验表明, 该模型能够很好地检测出模拟的4种类型的异常数据, 与其他机器学习方法相比, 具有更高的准确率和F1分数.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008992
    摘要:
    机制砂是由碎石或者砾石经制砂机反复破碎加工至粒径小于2.36 mm的人工砂. 在实验中把机制砂中的石粉含量和含泥量称为细粉含量, 细粉含量表征机制砂的洁净程度. 本文提出了一种基于XGBoost网络的机制砂细粉含量预测方法. 首先, 利用完全封闭的图像采集设备对机制砂细粉制成的溶液进行图像采集, 保证外界光线不会对图像拍照造成影响, 之后进行图片裁剪、读取RGB值、转LCH颜色空间等预处理, 然后构建XGBoost网络模型, 通过贝叶斯原理进行参数的循环迭代, 之后进行模型优化, 使模型的r2_score更高, 最终实现对机制砂细粉含量的预测. 结果表明: 该模型预测的数据的r2_score可以达到0.967 762, 相比于传统的多元线性回归模型、BP神经网络、传统XGBoost网络预测的r2_score0.896 1440.914 5980.950 670, 预测精度有明显提高. 在实际应用中, 该方法可以缩短机制砂细粉含量测量时间, 简化机制砂细粉含量测量步骤, 是一种新型的预测机制砂细粉含量的方法.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008996
    摘要:
    针对骑行者骑行姿势不规范的问题, 提出了一种用于规范骑行的参数化建模方法. 首先, 创建人体模型和自行车模型, 定义底层参数、中间层参数和高层参数, 实现模型参数化; 其次, 对骑行过程进行受力分析, 建立动力学模型, 保证虚拟骑行符合自然运动规律; 最后, 建立人体上下肢参数与自行车参数间约束关系, 实现人体关节协调运动. 对骑行过程进行运动仿真, 实验结果表明, 该方法能够为骑行者提供正确的姿势指导.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008980
    摘要:
    非侵入式负荷监测, 是智能用电和节能技术的重要一部分, 备受研究者关注. 由于近年来新发展起来的深度学习方法在各种任务所表现出来的优越性能, 目前已有一些代表性深度学习方法被成功用于非侵入式负荷监测中的负荷分解任务. 为了系统地总结深度学习方法在非侵入式负荷监测领域中的研究现状与进展, 拟对近年来面向深度学习的非侵入式负荷监测研究文献进行分析与归纳. 首先对非侵入式负荷监测的框架进行简要概述; 随后介绍了非侵入式负荷监测的特征提取方法和公开数据集, 并重点分析和归纳了非侵入式负荷监测中面向深度学习的负荷分解方法; 最后对该领域存在的一些挑战及机遇进行了展望, 并指出了其未来的研究方向.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008978
    摘要:
    建筑信息模型 (building information modeling, BIM)技术作为建筑业实现信息化数字化转型的核心技术, 在铁路建设全生命周期中具有很高的研究价值. 在铁路通信机械室内、站场、区间设计中, 将铁路通信实体的空间位置、形状、大小、关系等空间形态描述数据化, 结合铁路通信设计规范、相关铁路BIM标准以及专业实际设计需求, 研究开发出铁路通信数字工程设计系统. 本系统以空间形态数据为支撑, 铁路工程实体结构分解标准为基础, 在三维环境下实现了铁路通信机械室内机柜设备的智能布设, 站场通信沟槽线缆的路径规划, 区间通信信息点位置的准确布置. 系统进一步基于数字工程模型和图论基本原理, 实现了从数字工程模型中获取逻辑关系并生成通信逻辑网图. 经实际工程验证, 系统对铁路通信数字工程设计效率和准确率都有较大提升, 从工程源头实现了铁路通信工程数字化成果交付和应用, 促进了铁路通信工程项目全过程技术升级和数字化模式革新.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008973
    摘要:
    协商是人们就某些议题进行交流寻求一致协议的过程. 而自动协商旨在通过协商智能体的使用降低协商成本、提高协商效率并且优化协商结果. 近年来深度强化学习技术开始被运用于自动协商领域并取得了良好的效果, 然而依然存在智能体训练时间较长、特定协商领域依赖、协商信息利用不充分等问题. 为此, 本文提出了一种基于TD3深度强化学习算法的协商策略, 通过预训练降低训练过程的探索成本, 通过优化状态和动作定义提高协商策略的鲁棒性从而适应不同的协商场景, 通过多头语义神经网络和对手偏好预测模块充分利用协商的交互信息. 实验结果表明, 该策略在不同协商环境下都可以很好地完成协商任务.
    优先出版日期:  2022-11-18 , DOI: 10.15888/j.cnki.csa.008974
    摘要:
    针对疫情常态化背景下, 传统体育项目受场地、器材等限制, 市场上相关产品价格昂贵、可扩展性不足等问题, 提出了一种基于实时视频感知的虚拟体育交互系统. 该系统设计视频数据采集模块和人体关节点提取模块, 结合OpenPose获取人体的关节点坐标, 实时捕捉人体手势以及肢体动作. 动作语义理解模块包括运动动作理解和绘图动作理解. 前者根据运动中肢体关节点的相对位置关系, 识别运动动作语义. 后者将手腕部关节点绘图动作轨迹生成为草图图像, 使用AlexNet进行识别分类, 解析为对应的绘制动作语义. 该模型在边缘端设备的分类准确率为98.83%. 采用基于Unity设计的草图游戏应用作为可视化交互界面, 实现在虚拟场景中的运动交互. 该系统使用实时视频感知交互方式实现居家运动健身, 无需其他的外部设备, 具有更强的参与度和趣味性.
    优先出版日期:  2022-11-16 , DOI: 10.15888/j.cnki.csa.008964
    摘要:
    股市是金融市场的重要组成部分, 对股票价格预测有着重要的意义. 同时, 深度学习具有强大的数据处理能力, 可以解决金融时间序列的复杂性所带来的问题. 对此, 本文提出一种结合自注意力机制的混合神经网络模型(ATLG). 该模型由长短期记忆网络(LSTM)、门控递归单元(GRU)、自注意力机制构建而成, 用于对股票价格的预测. 实验结果表明: (1)与LSTM、GRU、RNN-LSTM、RNN-GRU等模型相比, ATLG模型的准确率更高; (2)引入自注意力机制使模型更能聚焦于重要时间点的股票特征信息; (3)通过对比, 双层神经网络起到的效果更为明显. (4)通过MACD (moving average convergence and divergence)指标进行回测检验, 获得了53%的收益, 高于同期沪深300的收益. 结果证明了该模型在股票价格预测中的有效性和实用性.
    优先出版日期:  2022-11-16 , DOI: 10.15888/j.cnki.csa.008987
    摘要:
    精准识别作物害虫对作物进行适时地防护和治理具有重要意义. 在面向自然环境时, 由于作物害虫体积小、与环境颜色的差异性不大, 同时又面临着各种噪声和复杂背景等因素的影响, 目前与深度学习相关的作物害虫识别模型存在难以兼顾识别准确率和鲁棒性的要求, 难以部署在计算资源有限和低性能的移动端等缺陷. 因此选取ShuffleNetV2网络结构中模型参数最少的ShuffleNetV2 0.5×为基准网络, 设计了一个基于高阶残差和注意力机制的轻量型作物害虫识别模型(HOR-Shuffle-CANet). 其中, 前期的高阶残差可以为后面的网络层提供丰富的害虫特征, 有效提高模型的识别准确率; 坐标注意力(coordinate attention, CA)机制能够进一步抑制背景噪声和对作物害虫重点信息的关注, 有效增强模型的鲁棒性; 带标签平滑正则化(label smoothing regularization, LSR)的双稳态逻辑损失函数可以解决训练含噪数据集时逻辑损失函数的两个缺点, 使得模型对噪声的适应能力更强. 试验结果表明, HOR-Shuffle-CANet模型在自然场景中10类常见作物害虫图像的测试数据集上达到了91.22%的识别准确率, 较基准网络提升了3.54个百分点. 在保持轻量化计算的基础上, 其识别准确率也高于现有的经典卷积神经网络AlexNet、VGG-16、GoogLeNet、Xception、ResNet-34和轻量级网络模型MobileNetV3-Small、EfficientNet-B0等. 该模型具有识别准确率高、鲁棒性强和抗干扰性能好等特点, 能够很好地适应作物害虫识别的实际应用需求.
    优先出版日期:  2022-11-14 , DOI: 10.15888/j.cnki.csa.008960
    摘要:
    程序自动修复技术是保证软件质量、提高开发效率的有效手段. 目前, 大多数自动修复工具使用测试用例作为补丁正确性验证的最终方法, 有限的测试用例难以对程序进行充分的测试, 因此自动修复工具生成的补丁集合包含大量的不正确补丁. 为了识别不正确补丁, 我们采用对比缺陷修复前后成功测试的执行路径以及生成测试用例的方法来识别修复补丁的有效性, 以解决自动修复工具精度低的问题. 我们的方法评估了来自6个经典的自动修复工具生成的132个补丁, 并成功地排除了80个不正确的补丁并且没有排除正确的补丁, 这表明我们的方法可以有效地排除不正确补丁, 并且提高自动修复工具的精度.
    优先出版日期:  2022-11-04 , DOI: 10.15888/j.cnki.csa.008965
    摘要:
    鱼类的探索与保护是保持海洋生态环境平衡的重要一环, 然而水下环境复杂, 受光照、水质以及遮挡物的影响, 造成水下捕捉鱼类图像成像模糊识别困难, 制约水下鱼类目标的检测速度以及检测精度. 针对以上问题, 提出了一种基于改进FCOS的海洋鱼类识别模型. 首先, 该模型以一阶段算法FCOS为基本架构, 使用轻量级的MobileNetv2作为骨干网络, 既保证检测准确度, 还可以提高检测; 其次, 引入自适应空间特征融合(adaptively spatial feature fusion, ASFF)模块, 避免尺度特征的不一致性, 提高检测精度; 最后, 将center-ness分支引入到回归分支中, 引入联合交并比损失(GIoU loss, generalized intersection over union)提高检测的性能. 实验数据集使用公开数据集Fish4Knowledge (F4K)中的图片以及视频帧截取图片, 选取训练性能最优模型进行评估. 结果表明, 提出的新模型在以上数据集的平均检测精度分别为99.79%、99.88%, 相较于原模型以及其他检测模型本文提出模型的检测精度与识别速度更高, 可为海洋鱼类识别提供参考依据.
    优先出版日期:  2022-11-04 , DOI: 10.15888/j.cnki.csa.008966
    摘要:
    以高速公路的无人机影像点云数据为研究对象, 提出一种基于双判定因子的道路绿化带分割算法. 首先对点云数据进行串行下采样, 在降低点云数目的同时尽可能多地保留点云特征点; 其次, 对降采样后的点云数据进行正射影校正; 最后, 提出一种结合法向量夹角与 RANSAC 平面分割双判定的点云分割算法, 实现了对高速公路中绿化带的准确分割, 采用绿化带边界提取算法最终实现高速公路环境信息的分割. 以G85高速凤翔段的无人机影像点云作为实验数据, 分别采用本文算法、基于法向量夹角的分割算法、基于RANSAC平面拟合分割算法进行验证. 实验结果表明基于双判定因子的道路绿化带分割算法对环境噪点及离群点有较好的抗干扰性, 可以有效过滤路面高曲率点, 提取结果较好.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008959
    [摘要] (124) [HTML] (0) [PDF 1.21 M] (125)
    摘要:
    随着互联网金融和电子支付业务的高速增长, 由此引发的个人信用问题也呈现与日俱增的态势. 个人信用预测本质上是不平衡的序列二分类问题, 这类问题的数据样本规模大、维度高、数据分布极不平衡. 为了高效区分申请者的信用情况, 本文提出一种基于特征优化和集成学习的个人信用预测方法(PL-SmoteBoost). 该方法在Boosting集成框架下构建个人信用预测模型, 首先利用Pearson相关系数对数据进行初始化分析, 剔除冗余数据; 通过Lasso选取部分特征来减少数据维度, 降低高维风险; 通过SMOTE过采样方法对降维数据的少数类进行线性插值, 以解决类不平衡问题; 最后为了验证算法有效性, 以常用的处理二分类问题的算法作为对比方法, 采用从Kaggle和微软开放数据库下载的高纬度不平衡数据集对算法进行测试, 以AUC作为算法的评价指标, 利用统计检验手段对实验结果进行分析. 结果表明, 相对于其他算法, 本文提出的PL-SmoteBoost算法具有显著优势.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008955
    摘要:
    为研究计算机病毒传播对网络系统安全态势的影响, 分析了SIR流行病传播模型与计算机网络安全之间的联系, 提出了一种用于网络安全态势预测的SIPM模型. SIPM模型中加入了节点对不同病毒传播的记忆功能, 支持多种病毒同时在网络中独立进行传播, 并在SIR模型基础上改进了动力学传播方程, 允许单独设置病毒对不同设备节点的感染能力和设备节点对不同病毒的抵御能力, 进而更加贴近真实网络环境. 实验分析使用了典型校园网络架构进行模拟仿真, 结果表明该模型可以从多个方面进行网络安全态势的分析与预测.
    优先出版日期:  2022-10-28 , DOI: 10.15888/j.cnki.csa.008958
    [摘要] (120) [HTML] (0) [PDF 1.53 M] (133)
    摘要:
    针对航空发动机剩余可用寿命(RUL)预测任务中代表性特征提取不充分导致RUL预测精度较低等问题, 提出了一种基于多特征融合的航空发动机RUL预测方法. 利用指数平滑法(ES)降低原始数据中的噪声干扰, 得到相对平稳的特征数据. 使用双向长短期记忆网络(Bi-LSTM)提取特征数据的时序特征, 利用多头注意力机制(Multi-Attention)为时序特征赋予权重; 设计卷积长短期记忆网络(Conv-LSTM)提取特征数据的时空特征; 提取特征数据的手工特征并使用Softmax函数计算权重. 设计一个特征融合框架将上述特征进行融合, 然后通过全连接网络回归实现最终RUL预测. 使用C-MAPSS数据集对模型进行仿真验证, 与Bi-LSTM等模型进行对比, 模型RUL预测精度更高, 适应性更好.
    优先出版日期:  2022-09-01 , DOI: 10.15888/j.cnki.csa.008808
    [摘要] (136) [HTML] (0) [PDF 1.29 M] (198)
    摘要:
    作为衡量空气污染物浓度的重要指标, 对PM2.5浓度进行监控预测, 能够有效地保护大气环境, 进一步地减少空气污染带来的危害. 随着空气质量自动监测站的大范围建立, 由传统的机器学习搭建的空气质量预测模型已经不能满足当今的需求. 本文提出了一种基于多头注意力机制和高斯概率估计的高斯-注意力预测模型, 并对沈阳市某监测站点的数据进行了训练和测试. 该模型考虑了PM2.5浓度受到其他空气质量数据的影响, 将空气质量数据的分层时间戳(周、日、小时)的信息对齐作为输入, 使用多头注意力机制对于不同子空间的时间序列关联特征进行提取, 能够获得更加完善有效的特征信息, 再经过高斯似然估计得到预测结果. 通过与多种基准模型进行对比, 相较于性能较优的DeepAR, 高斯-注意力预测模型的MSE、MAE分别下降了21%、15%, 有效地提高了预测准确率, 能够较准确地预测出PM2.5浓度.
    优先出版日期:  2022-03-31 , DOI: 10.15888/j.cnki.csa.008603
    [摘要] (165) [HTML] (8) [PDF 1.10 M] (6049)
    摘要:
    电力能源的安全在国家安全中占有重要的地位. 随着电力5G通信技术的发展, 大量电力终端产生定位需求. 传统GPS定位方法存在易受欺骗的问题, 如何有效提升GPS定位的安全性成为一个亟待研究的问题. 本文提出了一种基于基站辅助的电力5G终端GPS欺骗检测算法, 利用安全性较高的基站定位来检验可能被欺骗的GPS定位, 并且引入了一致性因数用来描述GPS定位结果和基站定位结果的一致性. 通过计算一致性因数, 如果大于设定的阈值则判断发生欺骗, 反之则GPS工作正常. 实验表明, 在使用本论文模型情况下, 本算法的准确率为99.98%, 优于传统机器学习分类算法. 此外, 本方法在运行速度上相较于传统机器学习分类算法也有一定程度的提升.
  • 全文下载排行(总排行年度排行各期排行)
    摘要点击排行(总排行年度排行各期排行)

  • 快速检索
    过刊检索
    全选反选导出
    显示模式:
    2000,9(2):38-41, DOI:
    [摘要] (11818) [HTML] (0) [PDF ] (18248)
    摘要:
    本文详细讨论了VRML技术与其他数据访问技术相结合 ,实现对数据库实时交互的技术实现方法 ,并简要阐述了相关技术规范的语法结构和技术要求。所用技术手段安全可靠 ,具有良好的实际应用表现 ,便于系统移植。
    1993,2(8):41-42, DOI:
    [摘要] (8682) [HTML] (0) [PDF ] (28107)
    摘要:
    本文介绍了作者近年来应用工具软件NU清除磁盘引导区和硬盘主引导区病毒、修复引导区损坏磁盘的 经验,经实践检验,简便有效。
    1995,4(5):2-5, DOI:
    [摘要] (8336) [HTML] (0) [PDF ] (10320)
    摘要:
    本文简要介绍了海关EDI自动化通关系统的定义概况及重要意义,对该EDI应用系统下的业务运作模式所涉及的法律问题,采用EDIFACT国际标准问题、网络与软件技术问题,以及工程管理问题进行了结合实际的分析。
    2016,25(8):1-7, DOI: 10.15888/j.cnki.csa.005283
    [摘要] (7175) [HTML] () [PDF 1167952] (31036)
    摘要:
    从2006年开始,深度神经网络在图像/语音识别、自动驾驶等大数据处理和人工智能领域中都取得了巨大成功,其中无监督学习方法作为深度神经网络中的预训练方法为深度神经网络的成功起到了非常重要的作用. 为此,对深度学习中的无监督学习方法进行了介绍和分析,主要总结了两类常用的无监督学习方法,即确定型的自编码方法和基于概率型受限玻尔兹曼机的对比散度等学习方法,并介绍了这两类方法在深度学习系统中的应用,最后对无监督学习面临的问题和挑战进行了总结和展望.
    2011,20(11):80-85, DOI:
    [摘要] (7022) [HTML] () [PDF 863160] (37065)
    摘要:
    在研究了目前主流的视频转码方案基础上,提出了一种分布式转码系统。系统采用HDFS(HadoopDistributed File System)进行视频存储,利用MapReduce 思想和FFMPEG 进行分布式转码。详细讨论了视频分布式存储时的分段策略,以及分段大小对存取时间的影响。同时,定义了视频存储和转换的元数据格式。提出了基于MapReduce 编程框架的分布式转码方案,即Mapper 端进行转码和Reducer 端进行视频合并。实验数据显示了转码时间随视频分段大小和转码机器数量不同而变化的趋势。结
    2008,17(5):122-126, DOI:
    [摘要] (6962) [HTML] (0) [PDF ] (42059)
    摘要:
    随着Internet的迅速发展,网络资源越来越丰富,人们如何从网络上抽取信息也变得至关重要,尤其是占网络资源80%的Deep Web信息检索更是人们应该倍加关注的难点问题。为了更好的研究Deep Web爬虫技术,本文对有关Deep Web爬虫的内容进行了全面、详细地介绍。首先对Deep Web爬虫的定义及研究目标进行了阐述,接着介绍了近年来国内外关于Deep Web爬虫的研究进展,并对其加以分析。在此基础上展望了Deep Web爬虫的研究趋势,为下一步的研究奠定了基础。
    1999,8(7):43-46, DOI:
    [摘要] (6484) [HTML] (0) [PDF ] (19803)
    摘要:
    用较少的颜色来表示较大的色彩空间一直是人们研究的课题,本文详细讨论了半色调技术和抖动技术,并将它们扩展到实用的真彩色空间来讨论,并给出了实现的算法。
    2007,16(9):22-25, DOI:
    [摘要] (6069) [HTML] (0) [PDF ] (3541)
    摘要:
    本文结合物流遗留系统的实际安全状态,分析了面向对象的编程思想在横切关注点和核心关注点处理上的不足,指出面向方面的编程思想解决方案对系统进行分离关注点处理的优势,并对面向方面的编程的一种具体实现AspectJ进行分析,提出了一种依据AspectJ对遗留物流系统进行IC卡安全进化的方法.
    2011,20(7):184-187,120, DOI:
    [摘要] (5558) [HTML] () [PDF 731903] (26834)
    摘要:
    针对智能家居、环境监测等的实际要求,设计了一种远距离通讯的无线传感器节点。该系统采用集射频与控制器于一体的第二代片上系统CC2530 为核心模块,外接CC2591 射频前端功放模块;软件上基于ZigBee2006 协议栈,在ZStack 通用模块基础上实现应用层各项功能。介绍了基于ZigBee 协议构建无线数据采集网络,给出了传感器节点、协调器节点的硬件设计原理图及软件流程图。实验证明节点性能良好、通讯可靠,通讯距离较TI 第一代产品有明显增大。
    2012,21(3):260-264, DOI:
    [摘要] (5499) [HTML] () [PDF 336300] (39787)
    摘要:
    开放平台的核心问题是用户验证和授权问题,OAuth 是目前国际通用的授权方式,它的特点是不需要用户在第三方应用输入用户名及密码,就可以申请访问该用户的受保护资源。OAuth 最新版本是OAuth2.0,其认证与授权的流程更简单、更安全。研究了OAuth2.0 的工作原理,分析了刷新访问令牌的工作流程,并给出了OAuth2.0 服务器端的设计方案和具体的应用实例。
    2004,13(10):7-9, DOI:
    [摘要] (5421) [HTML] (0) [PDF ] (7989)
    摘要:
    本文介绍了车辆监控系统的组成,研究了如何应用Rockwell GPS OEM板和WISMOQUIKQ2406B模块进行移动单元的软硬件设计,以及监控中心 GIS软件的设计.重点介绍嵌入TCP/IP协议处理的Q2406B模块如何通过AT指令接入Internet以及如何和监控中心传输TCP数据.
    2008,17(8):87-89, DOI:
    [摘要] (5333) [HTML] (0) [PDF ] (36981)
    摘要:
    随着面向对象软件开发技术的广泛应用和软件测试自动化的要求,基于模型的软件测试逐渐得到了软件开发人员和软件测试人员的认可和接受。基于模型的软件测试是软件编码阶段的主要测试方法之一,具有测试效率高、排除逻辑复杂故障测试效果好等特点。但是误报、漏报和故障机理有待进一步研究。对主要的测试模型进行了分析和分类,同时,对故障密度等参数进行了初步的分析;最后,提出了一种基于模型的软件测试流程。
    2008,17(1):113-116, DOI:
    [摘要] (5325) [HTML] (0) [PDF ] (44871)
    摘要:
    排序是计算机程序设计中一种重要操作,本文论述了C语言中快速排序算法的改进,即快速排序与直接插入排序算法相结合的实现过程。在C语言程序设计中,实现大量的内部排序应用时,所寻求的目的就是找到一个简单、有效、快捷的算法。本文着重阐述快速排序的改进与提高过程,从基本的性能特征到基本的算法改进,通过不断的分析,实验,最后得出最佳的改进算法。
    2008,17(8):2-5, DOI:
    [摘要] (5275) [HTML] (0) [PDF ] (28158)
    摘要:
    本文介绍了一个企业信息门户中单点登录系统的设计与实现。系统实现了一个基于Java EE架构的结合凭证加密和Web Services的单点登录系统,对门户用户进行统一认证和访问控制。论文详细阐述了该系统的总体结构、设计思想、工作原理和具体实现方案,目前系统已在部分省市的广电行业信息门户平台中得到了良好的应用。
    2004,13(8):58-59, DOI:
    [摘要] (5176) [HTML] (0) [PDF ] (24287)
    摘要:
    本文介绍了Visual C++6.0在对话框的多个文本框之间,通过回车键转移焦点的几种方法,并提出了一个改进方法.
    2010,19(10):42-46, DOI:
    [摘要] (5116) [HTML] () [PDF 1301305] (18223)
    摘要:
    综合考虑基于构件组装技术的虚拟实验室的系统需求,分析了工作流驱动的动态虚拟实验室的业务处理模型,介绍了轻量级J2EE框架(SSH)与工作流系统(Shark和JaWE)的集成模型,提出了一种轻量级J2EE框架下工作流驱动的动态虚拟实验室的设计和实现方法,给出了虚拟实验项目的实现机制、数据流和控制流的管理方法,以及实验流程的动态组装方法,最后,以应用实例说明了本文方法的有效性。
    2009,18(3):164-167, DOI:
    [摘要] (5114) [HTML] (0) [PDF ] (23811)
    摘要:
    介绍了一种基于DWGDirectX在不依赖于AutoCAD平台的情况下实现DWG文件的显示、操作、添加的简单的实体的方法,并对该方法进行了分析和实现。
    2009,18(5):182-185, DOI:
    [摘要] (5096) [HTML] (0) [PDF ] (27946)
    摘要:
    DICOM 是医学图像存储和传输的国际标准,DCMTK 是免费开源的针对DICOM 标准的开发包。解读DICOM 文件格式并解决DICOM 医学图像显示问题是医学图像处理的基础,对医学影像技术的研究具有重要意义。解读了DICOM 文件格式并介绍了调窗处理的原理,利用VC++和DCMTK 实现医学图像显示和调窗功能。
    2003,12(1):62-65, DOI:
    [摘要] (4980) [HTML] (0) [PDF ] (12292)
    摘要:
    本文介绍了一种将DTD转换成ER图,并用XMLApplication将ER图描述成转换标准,然后根据该转换标准将XML文档转换为关系模型的方法.
  • 全文下载排行(总排行年度排行各期排行)
    摘要点击排行(总排行年度排行各期排行)

  • 快速检索
    过刊检索
    全选反选导出
    显示模式:
    2007,16(10):48-51, DOI:
    [摘要] (4302) [HTML] (0) [PDF 0.00 Byte] (84239)
    摘要:
    论文对HDF数据格式和函数库进行研究,重点以栅格图像为例,详细论述如何利用VC++.net和VC#.net对光栅数据进行读取与处理,然后根据所得到的象素矩阵用描点法显示图像.论文是以国家气象中心开发Micaps3.0(气象信息综合分析处理系统)的课题研究为背景的.
    2002,11(12):67-68, DOI:
    [摘要] (2960) [HTML] (0) [PDF 0.00 Byte] (55777)
    摘要:
    本文介绍非实时操作系统Windows 2000下,利用VisualC++6.0开发实时数据采集的方法.所用到的数据采集卡是研华的PCL-818L.借助数据采集卡PCL-818L的DLLs中的API函数,提出三种实现高速实时数据采集的方法及优缺点.
    2008,17(1):113-116, DOI:
    [摘要] (5325) [HTML] (0) [PDF 0.00 Byte] (44871)
    摘要:
    排序是计算机程序设计中一种重要操作,本文论述了C语言中快速排序算法的改进,即快速排序与直接插入排序算法相结合的实现过程。在C语言程序设计中,实现大量的内部排序应用时,所寻求的目的就是找到一个简单、有效、快捷的算法。本文着重阐述快速排序的改进与提高过程,从基本的性能特征到基本的算法改进,通过不断的分析,实验,最后得出最佳的改进算法。
    2008,17(5):122-126, DOI:
    [摘要] (6961) [HTML] (0) [PDF 0.00 Byte] (42057)
    摘要:
    随着Internet的迅速发展,网络资源越来越丰富,人们如何从网络上抽取信息也变得至关重要,尤其是占网络资源80%的Deep Web信息检索更是人们应该倍加关注的难点问题。为了更好的研究Deep Web爬虫技术,本文对有关Deep Web爬虫的内容进行了全面、详细地介绍。首先对Deep Web爬虫的定义及研究目标进行了阐述,接着介绍了近年来国内外关于Deep Web爬虫的研究进展,并对其加以分析。在此基础上展望了Deep Web爬虫的研究趋势,为下一步的研究奠定了基础。
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号