###
计算机系统应用:2019,28(3):80-87
本文二维码信息
码上扫一扫!
基于最优定权组合法的大气污染物SO2预测
(1.浙江理工大学 信息学院, 杭州 310018;2.聚光科技(杭州)股份有限公司, 杭州 310052)
Prediction of Atmospheric Pollutant SO2 Based on Optimal Weighted Combination Method
(1.School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;2.Focused Photonics (Hangzhou) Inc., Hangzhou 310052, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 95次   下载 160
投稿时间:2018-09-13    修订日期:2018-10-18
中文摘要: 为了提高对大气污染物SO2的预测准确率,基于多个空气质量预测模式(WRF-CHEM、CMAQ、CAMx),以过去一段时间内各单项空气质量预测模式的组合预测误差平方和最小为原则,构建出针对大气污染物SO2的最优定权组合预测模型.选取2018年云南省楚雄、昭通、蒙自三个站点1至5月份的实际观测数据和前述三个空气质量模式的预测数据作为实验样本,然后分别采用多元线性回归法和动态权重更新法在相同的实验条件下与所提的最优定权组合预测法进行预测对比实验.实验结果表明,所提方法的预测值相较其他两种方法更加贴近实际观测值,其两项误差评估指标值均最小.总体而言,最优定权组合预测模型很好地综合了各单项空气质量预测模式的优势,提高了SO2的预测精度.
Abstract:To improve the prediction accuracy of atmospheric pollutant SO2, a combined forecasting model with optimal weights for atmospheric pollutant SO2 was constructed, which was based on multiple air quality prediction (WRF-CHEM, CMAQ, CAMx) modes according to the principle of minimum square sum of combined forecasting errors of each single air quality prediction model in the past years. The actual observation data and the aforementioned three air quality modes prediction data of Chuxiong, Zhaotong, and Mengzi stations in Yunnan Province from January to May in 2018 were selected as the experimental samples. Then the multivariate linear regression method and the dynamic weight updating method were used to compare the prediction results with the optimal weighted combination prediction method proposed in this study under the same experimental conditions. The experimental results show that the predicted values of the proposed method are closer to the observed values than those of the other two methods, and the two error evaluation indexes are the smallest. Generally speaking, the combined forecasting model with optimal weights synthesizes the advantages of each single air quality forecasting model and improves the forecasting accuracy of SO2.
文章编号:     中图分类号:    文献标志码:
基金项目:浙江省公益技术应用研究项目(2014C31G2060072)
引用文本:
谢磊,铁治欣,宋飞扬,丁成富.基于最优定权组合法的大气污染物SO2预测.计算机系统应用,2019,28(3):80-87
XIE Lei,TIE Zhi-Xin,SONG Fei-Yang,DING Cheng-Fu.Prediction of Atmospheric Pollutant SO2 Based on Optimal Weighted Combination Method.COMPUTER SYSTEMS APPLICATIONS,2019,28(3):80-87

用微信扫一扫

用微信扫一扫