###
:2019,28(3):10-17
本文二维码信息
码上扫一扫!
基于IVOCT图像的血管支架和硬化斑块综述
(商洛学院 经济管理学院, 商洛 726000)
Review on Vascular Stent Struts and Sclerotic Plaques Based on IVOCT Images
(Faculty of Economics and Management, Shangluo University, Shangluo 726000, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 308次   下载 190
投稿时间:2018-09-11    修订日期:2018-10-08
中文摘要: 冠状动脉粥样硬化是心血管疾病中最为常见的病症,每年其导致的全球死亡率也在逐步上升.当前,全球医疗机构缓解病人症状所采取的主要治疗手段是血管支架植入手术.目前,基于OCT的体内血管成像技术(Intra-Vascular OCT technology,IVOCT)因其高分辨率等优势,正在逐渐地被应用在心血管疾病患者的检查和治疗环节之中.患者在每次的检查和治疗时,会产生成百上千张IVOCT图像.如果使用传统的人工识别和标记IVOCT图像的方法则会效率低、耗时长.针对上述问题,国内外相关研究人员结合近几年最新的计算机技术提出许多半自动或自动的血管内部组织结构的识别方法.本文旨在全面、系统地介绍基于IVOCT图像的血管内部组织的研究进展情况,阐述其原理.
Abstract:Coronary atherosclerosis is the most common disease of cardiovascular diseases in global. The mortality rate of human caused by the coronary atherosclerosis is gradually rising year by year. The main treatment adopted by the global medical institutions to reduce the pain of patients is the vascular stent implantation. Currently, in vivo angiography based on OCT performing a high resolution is gradually used in the examination and treatment of patients with cardiovascular disease. Hundreds of or thousands of IVOCT images of patients are produced out during each treatment or examination time. The method of traditional manual detection and marking for OCT images is inefficient and time-consuming. In response to such issues, researchers worldwide have done a lot of research and proposed many semi-automatic and automatic detection methods of the internal tissues and structures of vessels. The purpose of this paper is to comprehensively and systemically introduce the progress of vascular internal tissue detection researches based on IVOCT image and explains its principles.
文章编号:     中图分类号:    文献标志码:
基金项目:陕西省教育厅科研计划项目(16JK1236);商洛学院一般性研究项目(15SKY012)
引用文本:
任鑫博,樊景博,田祎.基于IVOCT图像的血管支架和硬化斑块综述.计算机系统应用,2019,28(3):10-17
REN Xin-Bo,FAN Jing-Bo,TIAN Yi.Review on Vascular Stent Struts and Sclerotic Plaques Based on IVOCT Images.COMPUTER SYSTEMS APPLICATIONS,2019,28(3):10-17

用微信扫一扫

用微信扫一扫