###
计算机系统应用:2018,27(12):204-209
本文二维码信息
码上扫一扫!
改进粒子群优化BP神经网络粮食产量预测模型
宗宸生1, 郑焕霞2, 王林山1
(1.中国海洋大学 数学科学学院, 青岛 266100;2.山东省聊城市东昌府区郑家中学, 聊城 252053)
Grain Yield Prediction Based on BP Neural Network Optimized by Improved Particle Swarm Optimization
ZONG Chen-Sheng1, ZHENG Huan-Xia2, WANG Lin-Shan1
(1.School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China;2.Zhengjia Middle School in Dongchangfu District, Liaocheng City, Shandong Province, Liaocheng 252035, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 21次   下载 17
投稿时间:2018-04-11    修订日期:2018-05-08
中文摘要: 综合考虑影响粮食产量的多种因素,运用改进的粒子群算法优化BP神经网络的初始权重,建立了适合小样本粮食产量的预测模型.实验表明,与BP神经网络粮食预测模型和PSO-BP神经网络粮食预测模型相比,该模型具有更高的预测精度和较大的适应度.
Abstract:This study considers comprehensively the various factors of grain production yield and optimizes primary BP neural network weights using the improved Particle Swarm Optimization (PSO) algorithm, then establishes a prediction model suitable for prediction of small sample grain yield. The experiment proves that this model has higher prediction precision and greater fitness than grain yield prediction model based on classical BP neural network and PSO-BP neural network.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(11771014)
引用文本:
宗宸生,郑焕霞,王林山.改进粒子群优化BP神经网络粮食产量预测模型.计算机系统应用,2018,27(12):204-209
ZONG Chen-Sheng,ZHENG Huan-Xia,WANG Lin-Shan.Grain Yield Prediction Based on BP Neural Network Optimized by Improved Particle Swarm Optimization.COMPUTER SYSTEMS APPLICATIONS,2018,27(12):204-209

用微信扫一扫

用微信扫一扫