###
计算机系统应用:2018,27(9):205-209
本文二维码信息
码上扫一扫!
L1范数约束正交子空间非负矩阵分解
韩东, 盖杉
(南昌航空大学 信息工程学院, 南昌 330063)
Non-Negative Matrix Factorization on Orthogonal Subspace with L1 Norm Constrains
HAN Dong, GAI Shan
(School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 179次   下载 187
投稿时间:2018-01-29    修订日期:2018-02-27
中文摘要: 针对非负矩阵分解(NMF)相对稀疏或局部化描述原数据时导致的稀疏能力和程度比较弱的问题,提出了L1范数约束正交子空间非负矩阵分解方法.通过将L1范数约束引入到正交子空间非负矩阵分解的目标函数中,提升了分解结果的稀疏性.同时给出累乘迭代规则.在UCI、ORL和Yale三个数据库上进行的实验结果表明,该算法在聚类效果以及稀疏表达方面优于其他算法.
中文关键词: 非负矩阵分解  正交性  L1范数  稀疏性
Abstract:In order to solve the problem of unstable sparseness of Non-negative Matrix Factorization (NMF), an improved NMF on orthogonal subspace with L1 norm constraints was proposed. L1 norm constrained was introduced into the objective function of NMF on Orthogonal Subspace (NMFOS), which enhanced the sparsity of the decomposition results. The multiplicative updating procedure was also produced. Experiments on UCI, ORL, and Yale show that this algorithm is superior to other algorithms in clustering and sparse representation.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61563037);江西省自然科学基金(20171BAB202018)
引用文本:
韩东,盖杉.L1范数约束正交子空间非负矩阵分解.计算机系统应用,2018,27(9):205-209
HAN Dong,GAI Shan.Non-Negative Matrix Factorization on Orthogonal Subspace with L1 Norm Constrains.COMPUTER SYSTEMS APPLICATIONS,2018,27(9):205-209

用微信扫一扫

用微信扫一扫