###
计算机系统应用:2018,27(9):33-39
本文二维码信息
码上扫一扫!
深度先验图像特征在城市遥感大数据中的应用
申金晟1,2, 池明旻1,2
(1.复旦大学 计算机科学技术学院, 上海 201203;2.
上海市数据科学重点实验室, 上海 201203)
Application of Image Feature Extraction Based on Depth Prior in Urban Remote Sensing Big Data
SHEN Jin-Sheng1,2, CHI Ming-Min1,2
(1.School of Computer Science, Fudan University, Shanghai 201203, China;2.
Shanghai Key Laboratory of Data Science, Shanghai 201203, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 132次   下载 141
投稿时间:2017-12-06    修订日期:2017-12-27
中文摘要: 图像特征提取始终是计算机视觉和图像处理的核心任务.随着深度学习的快速发展,卷积神经网络逐渐取代传统图像特征算子,成为特征提取的主要算法.本文针对城市遥感数据众包标记系统中的数据关联问题,结合卷积神经网络和池化编码,提出基于深度先验的图像特征提取方法.该特征能有效聚焦室外图像近处物体,并通过图像检索实验验证了其对室外图像的良好表征能力.
Abstract:Image feature extraction is always the core task of computer vision and image processing. With the rapid development of deep learning, the Convolutional Neural Network (CNN) has gradually replaced the traditional image feature operator and became the main algorithm for feature extraction. Combined with CNN and sum pooling, we propose a new image feature extraction algorithm based on depth prior aiming at the data association problem in the crowd sourcing labeling system for urban remote sensing data. The feature can effectively focus on the objects in the vicinity of outdoor images and verify their good characterization of outdoor images via image retrieval experiments.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点研发计划(2016YFE0100300)
引用文本:
申金晟,池明旻.深度先验图像特征在城市遥感大数据中的应用.计算机系统应用,2018,27(9):33-39
SHEN Jin-Sheng,CHI Ming-Min.Application of Image Feature Extraction Based on Depth Prior in Urban Remote Sensing Big Data.COMPUTER SYSTEMS APPLICATIONS,2018,27(9):33-39

用微信扫一扫

用微信扫一扫