###
计算机系统应用:2018,27(8):1-9
本文二维码信息
码上扫一扫!
基于遗传神经网络的颜色恒常感知计算模型
范珮1, 张霞1, 徐诗惠2
(1.武汉大学 印刷与包装系, 武汉 430079;2.北京五八钱柜技术有限公司, 北京 100020)
Computing Model of Color Constancy Perception Based on Genetic Neural Network
FAN Pei1, ZHANG Xia1, XU Shi-Hui2
(1.Department of Printing and Packaging, Wuhan University, Wuhan 430079, China;2.Beijing 58 Till Technology Co. Ltd., Beijing 100020, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 201次   下载 155
投稿时间:2017-12-01    修订日期:2017-12-27
中文摘要: 在机器视觉领域,颜色恒常性是实现计算机视觉颜色校正和保持机器对颜色识别稳定性的重要因素.该模型通过心理物理实验获得由人眼感知得到的颜色恒常感知数据,将其放入神经网络中进行样本训练,并用遗传算法优化BP神经网络的连接权值和阈值.将所建立颜色恒常感知计算模型应用到图像颜色校正,通过主观和客观两个方面对校正结果进行对比评价,结果表示所建立的颜色恒常感知计算模型计算精度和效率高、复杂度低,比几种经典算法处理误差要小,针对图像的颜色再现有着更为符合人眼感知的特性.
Abstract:In the field of machine vision, color constancy is an important factor in achieving computer vision color correction and maintaining the machine stability to color recognition. By means of the psychophysics, the model gains the color perception data obtained by the human eyes perception, and puts it into the neural network for sample training, then optimizes the connection weights and thresholds of the BP neural network using the genetic algorithm. The color constant perception model is applied to the image color correction, and the correction results are evaluated in terms of the subjective and objective measures, the results show that the established algorithm has high precision and better efficiency, low complexity and less error than the classical algorithm, the color representation of images is more consistent with human perception.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(61505149)
引用文本:
范珮,张霞,徐诗惠.基于遗传神经网络的颜色恒常感知计算模型.计算机系统应用,2018,27(8):1-9
FAN Pei,ZHANG Xia,XU Shi-Hui.Computing Model of Color Constancy Perception Based on Genetic Neural Network.COMPUTER SYSTEMS APPLICATIONS,2018,27(8):1-9

用微信扫一扫

用微信扫一扫