###
计算机系统应用:2016,25(8):1-7
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
深度学习中的无监督学习方法综述
(1.解放军第181医院, 桂林 541002;2.国家数字交换系统工程技术研究中心, 郑州 450002)
Introduction of Unsupervised Learning Methods in Deep Learning
YIN Rui-Gang1, WEI Shuai2,3,4, LI Han2,3,4, YU Hong2,3,4
(1.Chinese People's Liberation Army 181th Hospital, Guilin 541002, China;2.National Digital Switching System Engineering &3.Technological R&4.D Center, Zhengzhou 450002, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 3114次   下载 5571
投稿时间:2015-12-08    修订日期:2016-01-11
中文摘要: 从2006年开始,深度神经网络在图像/语音识别、自动驾驶等大数据处理和人工智能领域中都取得了巨大成功,其中监督学习方法作为深度神经网络中的预训练方法为深度神经网络的成功起到了非常重要的作用. 为此,对深度学习中的监督学习方法进行了介绍和分析,主要总结了两类常用的监督学习方法,即确定型的自编码方法和基于概率型受限玻尔兹曼机的对比散度等学习方法,并介绍了这两类方法在深度学习系统中的应用,最后对监督学习面临的问题和挑战进行了总结和展望.
Abstract:Since 2006, Deep Neural Network has achieved huge access in the area of Big Data Processing and Artificial Intelligence, such as image/video discriminations and autopilot. And unsupervised learning methods as the methods getting success in the depth neural network pre training play an important role in deep learning. So, this paper attempts to make a brief introduction and analysis of unsupervised learning methods in deep learning, mainly includs two types, Auto-Encoders based on determination theory and Contrastive Divergence for Restrict Boltzmann Machine based on probability theory. Secondly, the applications of the two methods in Deep Learning are introduced. At last a brief summary and prospect of the challenges faced by unsupervised learning methods in Deep Neural Networks are made.
文章编号:     中图分类号:    文献标志码:
基金项目:国家重点基础研究发展计划(973)(2012CB315901)
引用文本:
殷瑞刚,魏帅,李晗,于洪.深度学习中的无监督学习方法综述.计算机系统应用,2016,25(8):1-7
YIN Rui-Gang,WEI Shuai,LI Han,YU Hong.Introduction of Unsupervised Learning Methods in Deep Learning.COMPUTER SYSTEMS APPLICATIONS,2016,25(8):1-7

用微信扫一扫

用微信扫一扫