E-mail: csa@iscas.ac.cn http://www.c-s-a.org.cn Tel: +86-10-62661041

高阶深度可分离无人机图像小目标检测算法①

郭 伟, 王珠颖, 金海波

(辽宁工程技术大学 软件学院, 葫芦岛 125105) 通信作者: 王珠颖, E-mail: 18342989188@163.com

摘 要:当前无人机图像中存在小目标数量众多、背景复杂的特点,目标检测中易造成漏检误检率较高的问题,针 对这些问题,提出一种高阶深度可分离无人机图像小目标检测算法.首先,结合 CSPNet 结构与 ConvMixer 网络,深 度可分离卷积核,获取梯度结合信息,并引入递归门控卷积 C3 模块,提升模型的高阶空间交互能力,增强网络对小 目标的敏感度;其次,检测头采用两个头部进行解耦,分别输出特征图分类和位置信息,加快模型收敛速度;最后,使 用边框损失函数 EIoU,提高检测框精准度.在 VisDrone2019 数据集上的实验结果表明,该模型检测精度达到了 35.1%,模型漏检率和误检率有明显下降,能够有效地应用于无人机图像小目标检测任务.在 DOTA 1.0 数据集和 HRSID 数据集上进行模型泛化能力测试,实验结果表明,该模型具有良好的鲁棒性.

关键词:小目标检测;递归门控卷积;解耦头;无人机图像;YOLOv5

引用格式:郭伟,王珠颖,金海波.高阶深度可分离无人机图像小目标检测算法:计算机系统应用.http://www.c-s-a.org.cn/1003-3254/9471.html

Small Target Detection Algorithm for High-order Depth Separable UAV Images

GUO Wei, WANG Zhu-Ying, JIN Hai-Bo

(School of Software, Liaoning Technical University, Huludao 125105, China)

Abstract: At present, there are many small targets in UAV images and the background is complex, which makes it easy to cause a high error detection rate in target detection. To solve these problems, this study proposes a small target detection algorithm for high-order depth separable UAV images. Firstly, by combining the CSPNet structure and ConvMixer network, the study utilizes the deeply separable convolution kernel to obtain the gradient binding information and introduces a recursively gated convolution C3 module to improve the higher-order spatial interaction ability of the model and enhance the sensitivity of the network to small targets. Secondly, the detection head adopts two heads to decouple and respectively outputs the feature map classification and position information, accelerating the model convergence speed. Finally, the border loss function EIoU is leveraged to improve the accuracy of the detection frame. The experimental results on the VisDrone2019 data set show that the detection accuracy of the model reaches 35.1%, and the missing and false detection rates of the model are significantly reduced, which can be effectively applied to the small target detection task of UAV images. The model generalization ability is tested on the DOTA 1.0 dataset and the HRSID dataset, and the experimental results show that the model has good robustness.

Key words: small target detection; recursively gated convolution; decouple head; unmanned aerial vehicle (UAV) image; YOLOv5

① 基金项目: 国家自然科学基金 (62173171)

收稿时间: 2023-11-01; 修改时间: 2023-12-04; 采用时间: 2023-12-11; csa 在线出版时间: 2024-01-30

随着无人机 (unmanned aerial vehicle, UAV) 相关 技术的不断深入研究,其应用场景不断扩展,由于无人 机具有低成本、轻便快速的特点[1],被广泛应用于工农 业、抢险救灾、遥感图像和视频录制等实际行业领域, 它是卫星遥感的有力补充[2]. 无人机的理想摄影平台是 低空航空拍摄,利用高清传感器可以捕捉地面目标,所 拍摄的图像分辨率较高.在云层不影响图像拍摄的低 空飞行状态下,无人机使用高清摄像头拍摄所获得的 图像可以达到厘米级别的分辨率[3]. 但相对来说, 在大 多数的无人机航拍图像中,由于较高的拍摄高度,无人 机距离地面较远,图像中的各个类别的待检测目标对 象呈现出小目标的特点,如人、摩托车、自行车等,小 目标往往特征单一,像素比较低,检测过程中容易出现 漏检或者误检等不足之处.背景复杂,存在着目标遮挡, 光线不足、相似形状物体干扰等因素的干扰^[4].因此提 高无人机航拍图像中小目标的检测精度已成为目标检 测中一个具有挑战性的研究方向.

传统的目标检测算法很难提取到足够好的特征来 进行检测,而深度学习的快速发展极大地推动了目标 检测技术的前进,在一定程度上改变了人类的生活方 式,减轻了人们的负担.基于深度学习的目标检测算法, 可以根据其模型训练方式特点大致分为单阶段 (onestage) 目标检测算法和二阶段 (two-stage) 目标检测算 法两类. 二阶段目标检测算法的代表为 R-CNN^[5]、Fast R-CNN^[6]、Faster R-CNN^[7]、R-FCN^[8], 此类算法基于 区域提取,对候选区域进行位置精修和类别分类,逐步 优化,虽然其检测精度略高,但该类算法的检测流程相 对复杂,检测速度普遍较慢.不适合应用于对实时性要 求较高的场景中. 单阶段目标检测算法采用了回归思 想的端到端的目标检测,相比于二阶段目标检测算法, 单阶段目标检测算法起步较晚,能够更好地吸收前者 的优势,同时克服不足之处.其主要代表是 SSD (single shot multibox detector) 系列^[9]、YOLO (you only look once) 系列^[10-13]和 RetinaNet 系列^[14], 此类检测算法精 度略低,但其检测速度很快,广泛应用于工业界.

近些年来,单阶段目标检测算法 YOLO 系列不断 改进,模型检测精度有了很大提升,被广泛应用于无人 机图像检测.程江川等人^[15]采用轻量化高效骨干网络 对模型进行改进,提高模型检测速度.李利霞等人^[16]提 出浅层特征增强模块,并设计多级特征融合模块,动态 调节各输出检测层的权重,增强小目标特征信息.韩俊 等人^[17]提出了 LSA_YOLO 模型,构造多尺度特征提取 模块,设计自适应权重动态融合结构,增强算法对密集 小目标的检测能力;李扬等人^[18]以 YOLOX 为基线算 法,通过多尺度特征融合缩小网络感受野,提高网络细 节提取能力,提升对小目标图像的敏感程度.奉志强等 人^[19]提出了一种改进无人机实时密集小目标检测的算 法,提出一种空间-通道注意力模块,在主干网络中引 入 Transformer 模块,提高复杂背景下密集小目标的特 征提取能力.

上述算法存在检测能力较弱、模型参数量较大的 缺点,无法快速且准确的检测无人机小目标图像,为了 在实际场景中满足无人机图像小目标检测算法的要求, 精准且迅速地检测出对象目标信息,选择 YOLOv5s 算 法为基线算法进行改进,提出 CHD-YOLOv5 模型.首 先在骨干网络部分,融合 CSPNet 网络与 ConvMixer^[20], 将递归门控卷积^[21]与 C3 模块结合构建 C3HB 模块,并 且替换网络预测头部为精简的解耦头部,损失函数选 用 EIoU^[22],最后在 VisDrone2019 数据集上测试改进 后的算法,得到的实验结果数据表明,改进后的算法对 检测无人机小目标图像的精度值有效提高了,明显优 于原算法.

1 改进的 CHD-YOLOv5 模型

1.1 YOLOv5 网络结构

YOLOv5 检测算法集合了很多算法的优势, 是一 个高效精准的目标检测框架,该算法有良好的稳定性 与适应性,目前应用最为广泛.YOLOv5 算法共有 YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l 和 YOLOv5x 这 5 个版本, YOLOv5s 网络的模型文件只 有 24M,除 YOLOv5n 外,其他 3 个版本都在 YOLOv5s 的基础上对网络不断进行加深与加宽, YOLOv5 算法 在模型训练阶段使用数据增强方法 Mosaic, 通过随机 缩放、随机裁剪、随机排布的方式对不同图像进行拼 接,能够有效提高算法对小目标的检测能力.骨干网络 部分, YOLOv5 引入了能够直接处理输入图片的 Focus 结构. 其结构最重要的作用是切片操作, 可以将 2×2×3 的图像切片为 1×1×12 的特征图. 网络输出部分: 延续 YOLO 系列的一贯做法,与 YOLOv3、YOLOv4 类似, 采用的预测头部是耦合的 Head, 共有 3 个不同的输出 头部,进行多尺度预测. YOLOv5s 较好地平衡了速度 与性能,所以本文的基线模型选择 YOLOv5s 版本.

1.2 CHD-YOLOv5 模型

无人机图像存在尺寸较小、容易受环境影响、数 量大且目标密集等问题,为了快速且精准识别无人机 小目标图像,算法改进以YOLOv5s算法为基础.基于 CSPNet 构建 CSP-ConvMixer 模块, 实现模型梯度信息 的结合, 增强网络的学习能力, 提升算法性能; 通过引 入递归门控卷积与C3模块结合,明显提高了模型对小 目标的高阶空间信息捕获能力,提升模型的高阶交互 能力;把边框损失函数由 CloU 替换为 EloU, 对预测和 真实框之间宽和高的预测结果进行惩罚,提高收敛速 度和边界框定位准确度, 增强模型检测效果; 解耦预测 部分的分类任务与回归任务,加快模型收敛速度.本文 将详细介绍本文所提出 CHD-YOLOv5 模型, 叙述 CHD-YOLOv5 模型中改进的网络结构以及针对小目 标检测而新设计的模块,最后将 CHD-YOLOv5 模型与 其他主流模型进行对比,有效表明本文所提出模型的 高效性.本文模型的网络结构图如图1所示.

图 1 改进后的 CHD-YOLOv5 网络结构

1.2.1 CSP-ConvMixer 模块

Wang 等人^[23]提出新型骨干网络 CSPNet (cross stage partial network) 结构. 该结构能够在降低网络计

算量的同时,获取更丰富的梯度融合信息,保持甚至提高 CNN 的能力,减少内存消耗. CSPNet 结构通过将浅层的特征图进行通道拆分,一部分经由特征提取模块向后传播,另一部分则采用跨阶段特征融合策略直接与特征提取模块的输出进行合并,实现了梯度信息的结合,增强网络的学习能力. CSPNet 结构可以与多种网络结构结合,轻松应用于多数经典 CNN 模型,在相同的实验环境下,可以提高模型的学习能力,提升算法性能.

ConvMixer 是一个只需要使用标准的卷积的 patch embedding 网络, 通过空间融合 (depthwise convolution) 和通道融合 (pointwise convolution) 来减少模型的参数. patch embedding 的主要功能是对原始输入图像 (*h*, *w*) 划分图像块. 首先指定每个图像块的 size 为 (*patch_size*, *patch_size*), 将每张图像划分出 (*h*/*patch_size*, *w*/*patch_size*) 个图像块, kernel size 为 *q*, stride 为 *q*, 计算公式为 式 (1) 所示:

$$z_0 = BN(\sigma\{\operatorname{Conv}(X, q, q)\})$$
(1)

在 ConvMixer 中,特征提取层由深度卷积 (depthwise conv)、GELU 激活函数和逐点卷积 (pointwise conv) 这 3 部分组成. 混合分离空间和通道维度,即先 通过一个深度可分离卷积提取图片长宽的特征信息, 再通过一个逐点卷积融合通道信息,同时在整个过程 中,保证大小和分辨率相同. 与 ResNet 等 CNN、Swin、 AS-MLP 等金字塔结构的分类头一致,每个卷积之后 是一个激活函数和激活后的 BatchNorm,计算公式如 下所示:

 $z'_{t} = BN(\sigma \{\text{ConvDepthwise}(z_{l} - 1)\}) + z_{l-1} \qquad (2)$

 $z_{l+1} = BN\left(\sigma\left\{\text{ConvPointwise}(z'_l)\right\}\right)$ (3)

Patch embedding 通过一次性进行下采样来减少内部分辨率,有效增加感受野,从而可以更容易的将远距离空间信息混合.在 patch embedding 和多个 Conv-Mixer layer 之后,经过全局池化获得特征向量,再经过全连接层传递进行分类.实验数据证明,模型性能上,ConvMixer 可以与 ResNet 等经典模型相比较,也明显优于 VIT 和 MLP-Mixer 等,且越大的深度可分离卷积卷积核,其模型的性能提升越强.CSPNet 结构应用于ConvMixer 之后的网络结构如图 2 所示.

1.2.2 递归门控卷积 C3HB 模块

递归门控卷积模块由门控卷积和递归设计组成,

利用门控卷积和递归设计进行高阶空间交互作用,具 有执行高效、可扩展和平移等变的特点,可以基于各 种视觉 Transformer 和基于 CNN 的模型进行即插即的 改进. 空间交互作用是在特征图采样过程中通过额外 的或者自身的某种计算,将空间的相互性加入到生成 的特征中,例如 Transformer 中就利用不同的变换生成 *Q*和 *K* 进而进行空间位置相关性的计算. 高阶空间交 互是通过增加通道宽度的设计而高效实现的具有有限 复杂性的任意阶空间交互. 通道维度数计算公式如式 (4) 所示:

$$C_k = \frac{C}{2^{n-k}}, \ k \in (0, n-1)$$
(4)

图 2 CSP-ConvMixer 模块

门控卷积首先利用两个卷积层来调整特征通道数, 深度可分离卷积的输出特征会沿着特征分为多块,考 虑空间信息交互,前后两块的特征交互将进一步利用 逐元素相乘的方式,最终得到输出特征.首先使用线性 投影函数*φ*得到一组投影特征如式(5)所示:

$$[p_0^{H \times W \times C_0}, q_0^{H \times W \times C_0}, \cdots, q_{n-1}^{H \times W \times C_{n-1}}] = \varphi(x)$$

$$\in R^{H \times W \times (C_0 + \sum_{0 \le k \le n-1} C_k)}$$
(5)

以递归的方式进行门控卷积如式(6)所示:

$$p_{k+1} = f_k(q_k) \odot n_k / \alpha \ (k = 0, 1, \cdots, n-1)$$
(6)

其中, f_k代表 depthwise 卷积操作, n_k代表递归操作中 匹配的特征通道数. 递归设计通过不断进行元素的逐 个相乘, 提高网络容以提升模型性能. 通过这种递归方 式, 越靠后的特征其高阶信息保存越多, 使其高阶中的 特征交互就会更多, 有助于提高视觉模型的表达能力, 有效表明高阶交互对处理信息的作用.

YOLOv5 算法特征提取部分的 CSP 结构集成残差 组件, 但是由于残差模块无法充分学习特征信息, 缺乏

全局信息提取能力,无法有效检测出无人机小目标图 像.因此,在YOLOv5算法中引入递归门控卷积.YOLOv5 算法主干网络部分的C3模块具有丰富的语义信息,将 最后两个C3模块与递归门控卷积相结合,构建C3HB (C3-HorBlock)模块,递归门控卷积C3HB模块的结构 图如图3所示.一般来说,检测性能越强的模型,其主 干网络提取特征能力越强.借鉴Transformer结构将 HorNet中的递归门控卷积模块gⁿConv引入,构建由空 间混合层(MLP)和前馈网络(FFN)组成的HorBlock. 替换YOLOv5中的n个残差网络为n个HorBlock,并 引入递归门控卷积模块gⁿConv 替换掉C3模块中的卷 积模块,有效增强了主干网络部分的特征信息提取能 力.该模块的计算量如式(7)所示:

$$FLOPs = HWC(2K^2 + 11/3 \times C + 2) \tag{7}$$

该模块能够在无人机图像小目标检测中通过实现 上下文的小目标信息交互而预测其具体位置,提升模 型的高阶交互能力,它可以逐步通过相邻特征间的信 息交互实现高阶特征目标获取,提高网络对较小目标 的敏感度.在提升网络检测精度的同时,既避免了过度 增加参数量,又保证了特征信息在送往特征增强网络 之前不会丢失目标信息的语义,有效提高了模型的高 阶空间交互能力,从而增强模型的检测能力.

图 3 递归门控卷积 C3HB 模块

1.2.3 精简解耦检测头部 OD-Head

众所周知,目标检测的分类任务和回归任务之间 是相互矛盾的.因此,大多数一级和二级探测器应用解 耦头部,但是,由于 YOLO 系列的主干和特征金字塔不 断演化,从 YOLOv3 发展到 YOLOv5,原始模型的检测 头部是通过分类和回归分支融合共享的方式来实现的, 检测头部仍然是耦合的,其检测头部结构如图 4 所示. YOLOX^[24]的检测头分别采用两个不同的头解耦输出的特征图,各自输出分类和位置,独自解耦分类和回归两个分支,在提升精度的同时,有效加快网络收敛速度.因此解耦头被广泛应用于目标检测算法中.

在 YOLOv5 的检测头部引入解耦头部的方法,可 以有效提高检测精度,加速网络的收敛,本文中提出的 YOLOv5 中引入的解耦头部也是基于 anchor 检测的方 法,但与 YOLOX 解耦头部所使用的检测方法有所不 同.YOLOX 的解耦头部在提升模型精度的同时,新增 了多个额外的卷积层,大大增加了延时和参数量,本文 提出了一个更加精简的解耦头部 OD-Head,其检测头 部结构如图 5 所示.OD-Head 的添加方式有所不同,参 数量和计算量有明显下降,在维持精度的同时降低了 延时,缓解了解耦头部中 3×3 卷积带来的额外延时开销.

1.2.4 EIoU 损失函数

目标检测任务的损失函数一般由分类损失函数 (classification loss)和回归损失函数 (bounding box regression loss)两部分构成,是目标检测中的常见指标. *IoU_ Loss*主要是通过预测框和真实框的相交区域面积和合 并区域面积的比值, *IoU* 的计算公式如式 (8) 所示:

$$IoU = \frac{A \cap B}{A \cup B} \tag{8}$$

其中, *A* 和 *B* 分别表示预测框和真实框, 即 *IoU* 值越高, 检测结果越好. 尺度不变性是 *IoU* 一个很好的特性, 也 就是对尺度不敏感 (scale invariant), 在 regression 任务 中, 判断 predict box 和 gt 的距离最直接的指标就是 *IoU*. 如果 *IoU* 值为 0, 即两个目标框没有任何重叠时, 梯度为 0, 则 *IoU* 无法反映两个目标的精准重合度, 不 能优化. 如式 (9) 所示:

$$IoU_Loss = 1 - IoU \tag{9}$$

IoU的变体有 EIoU、SIoU、GIoU、WIoU等, YOLOv5 算法的损失函数为 CIoU. CIoU 多用于训练, 该损失函数考虑了边界框回归的重叠面积、中心点距 离和纵横比,但当预测框的宽高满足一定条件时, CIoU 中此项的惩罚便失去了作用. EIoU 考虑了重叠面积、 中心距离、长宽边长真实差, 解决了 CIoU 纵横比的模 糊定义. EIoU 的计算公式如式 (10) 所示:

$$L_{\text{EIoU}} = L_{\text{IoU}} + L_{\text{dis}} + L_{\text{asp}}$$

= $1 - IoU + \frac{p^2(b, b^{\text{gt}})}{c^2} + \frac{p^2(w, w^{\text{gt}})}{c_w^2} + \frac{p^2(h, h^{\text{gt}})}{c_h^2}$ (10)

其中, c 代表的是能够同时包含预测框和真实框的最小 闭包区域的对角线距离, c_w和c_h分别表示最小外接矩 形的宽和高, p²(b,b^{gt})表示预测框与真实框之间中心 点的欧氏距离, (w,h)和(w^{gt},h^{gt})分别为预测框和真实 框的宽和高, EIoU 将真实框与预测框的宽高进行惩罚 对比, 精准定位检测框, 提升模型的检测精度.

2 实验

本文实验环境为 Windows 11 操作系统, 搭载 10 vCPU Intel(R) Xeon(R) Gold 5218R CPU@2.10 GHz 处 理器, 使用 RTX3090 (24 GB) GPU 进行训练推理, 采 用 PyTorch 1.9.0 版本的深度学习框架, 加速库是 CUDA 11.1, 所使用的编程语言为 Python 3.8.

2.1 数据集

本文实验数据选取 VisDrone2019 无人机航拍数 据集,该数据集是由天津大学机器学习与数据挖掘实 验室的 AI SKYEYE 团队所收集的,图像采集于国内 14 个城市,由不同类型的无人机在不同的天气情况、 不同的场景和不同的光照条件下拍摄,单张图像中往 往包含多种目标信息、大量的小目标,且目标存在不 同程度的遮挡. VisDrone2019 数据集共有 8629 张静态 图片,划分为 3 个部分,训练数据集 6471 张,验证数据 集 548 张,和测试数据集 1580 张. VisDrone2019 数据 集图像种类包含 10 类,分别为:人、行人、自行车、 汽车、卡车、面包车、三轮车、遮阳三轮车、公交车 以及摩托车,数据集共有 260 万个标注. VisDrone2019 数据集中的数据信息如图 6 所示.由图 6(b)可知,该数 据集中包含大量分布密集的小目标,符合本文的研究 问题.

2.2 评价指标与参数设置

本文实验基于 YOLOv5s 模型进行改进, 初始学习 率为 0.01, 训练轮数为 100 epochs, 优化器为 SGD, 数 据增强采用 Mosaic, 输入图像的分辨率为 640×640, 实 验选取精确率 (precision, *P*)、召回率 (recall, *R*)、整体 平均精度均值 (*mAP*)、每秒传输帧数 (FPS) 以及网络 的参数量 (Params) 为评价指标, 通过实验数据对比与 分析对算法网络模型进行评估, 其中公式如下所示:

$$P = \frac{TP}{TP + FP} \times 100\% \tag{11}$$

$$R = \frac{TP}{TP + FN} \times 100\% \tag{12}$$

$$mAP = \frac{\sum \int_0^1 P(R) dR}{n} \times 100\%$$
(13)

其中,式(11)为精确度的计算公式,式(12)为召回率的计算公式,式(13)为整体平均精度均值的计算公式, TP、FP和FN分别表示正确检测框、错误检框和漏 检框的数量,n表示所有需要检测的类别总数.

2.3 模块对比实验分析

2.3.1 CSP-ConvMixer 模块对比分析

本文结合 CSPNet 和 ConvMixer 构建的 CSP-Conv-Mixer 模块, 实现了更加丰富的梯度组合, 有利于提高 模型的学习能力, 仅使用标准卷积来实现混合步骤, 有 效扩大感受野, 从而能够更容易的混合远距离的空间 信息, 但较金字塔模型相比较, 提高了模型复杂度, 推 理速度有所减缓, 实验数据如表 1 所列. 该模块较基线 模型 *mAP*₅₀ 值提升了 5.4%, *mAP*₇₅ 值提升了 4.1%, 模 型精度检测效果提升明显.

2.3.2 递归门控卷积 C3HB 模块对比分析

本文构建的递归门控卷积 C3HB 模块, 与具有相

似的整体架构 Swin Transformer 和 ConvNeXtV2 相比, 实验数据如表 2 所列. 该模块具有空间高阶特征提取 能力,有良好的可扩展性,能够更好地捕获小目标的细 节信息,增加了模型参数量,减缓了网络检测速度,但 *mAP*₅₀ 和 *mAP*₇₅ 均有明显提升,优于 Swin Transformer 和在 ConvNeXt 基础上升级的 ConvNeXtV2,证明了该 模块对提高模型性能的有效性.

表1 CSP-ConvMixer 模块的对比实验

模块	Params (×10 ⁴)	FLOPs (×10 ⁶)	mAP ₅₀ (%)	$mAP_{75}(\%)$
CSP	7.03	15.8	27.5	13.5
CSP-ConvMixer	32.38	111.9	32.9	17.6

表 2 i	递归门控卷积	C3HB 模块	的对比实验	脸
模块	Params (×10 ⁴)	FLOPs (×10 ⁶)	mAP ₅₀ (%)	mAP ₇₅ (%)
C3	7.03	15.8	27.5	13.5
Swin Transformer	9.73	105.3	26.2	13.0
ConvNeXtV2	7.07	15.9	28.7	14.9
C3HB	44.13	98.2	29.7	15.8

2.3.3 解耦头部对比分析

本文提出的基于 anchor 检测的方法替换预测头部 为 OD-Head 解耦头部, 平均精度均值提升了 0.8 个百 分点, 有效提升网络收敛速度, 并提升模型检测精度; 为了表明本文所设计的 OD-Head 解耦头部更加具有 高效性与实时性, 将 OD-Head 与 YOLOv5 的 coupled head 和 YOLOX^[24]的 decoupled head 进行对比实验, 实 验数据如表 3 所列. 与耦合头部相比较, 解耦头部的参 数量和浮点运算数有所增加, 同时模型的精度也提高 了. 经过优化的 OD-Head 较 YOLOX 的 decoupled head, 参数量和浮点运算数均有明显的大幅度下降, 平 均精度均值却提升了 0.3 个百分点. 解耦头部的对比试 验有效证明了本文提出的 OD-Head 解耦头部可以在 提升模型检测精度的同时减少参数量, 加快网络的收 敛速度.

表3 检测头部的对比实验

	, , <u></u>	2 100 0.1		
模块	Params (×10 ⁴)	FLOPs (×10 ⁶)	mAP ₅₀ (%)	mAP ₇₅ (%)
Coupled head	7.03	15.8	27.5	13.5
Decoupled head	14.35	56.5	28.0	14.9
OD-Head	8.79	21.6	28.3	15.1

2.3.4 EIoU 损失函数对比分析

本文在 4 种不同损失函数的情况下进行对比实验, 以更进一步验证损失函数 EIoU 对无人机图像小目标 检测的有效性, VisDrone2019 数据集在不同损失函数 影响下的检测精度,实验数据如表 4 所列.引入 EIoU 损失函数后,模型的 mAP 50 值提升了 1.0%. EIoU 引入 目标框和预测框的长宽信息,避免了出现中长宽比等 比例变化惩罚失效的问题,加快网络模型的收敛速度, 提高回归精度,快速定位结果,更适合于复杂背景下的 无人机小目标检测任务.

表 4 损失函数的对比实验(%)

损失函数	mAP_{50}	mAP ₇₅
GIoU	27.4	14.3
CIoU	27.5	13.5
SIoU	27.9	14.8
WIoU	27.0	14.1
EIoU	28.5	15.1

2.4 消融实验分析

为了直观地体现各方法对网络性能的影响,验证 本文提出 4 个模块对算法改进的有效性, 即在 YOLOv5s 算法中增加 CSP-ConvMixer 模块, 主干网络引入递归 门控卷积 C3HB 模块,将检测头部 (coupled head) 替换

为解耦头部 OD-Head 以及使用 EloU 损失函数. 消融 实验的进行选取完全相同的实验环境,评估各个模块 对模型性能的影响. 实验结果如表 5 所列. 引入 CSP-ConvMixer 模块, 平均精度均值提升了 3.2 个百分点, 验证了该模块的有效性;将原 YOLOv5 算法中主干网 络部分 C3 结构的残差网络替换为递归门控卷积 C3HB 模块,平均精度均值提升了 2.2 个百分点,有效地捕获 了高阶空间信息交互能力,逐步细化了局部信息,增强 了模型的特征信息提取能力和建模能力;基于 anchor 检测的方法, 替换预测头部为 OD-Head 解耦头部, 平 均精度均值提升了 0.8 个百分点, 有效提升网络收敛速 度,并提升模型检测精度;引入 EloU 损失函数,模型的 平均精度均值上升了 1.0 个百分点, EIoU 损失函数在 CloU 损失函数的基础上,分别计算预测框和真实框宽 高的差异值,解决了纵横比的模糊定义,加快了预测框 的收敛速度,有效提升了小目标检测精度.

表 5 消融实验数据表

-									
	YOLOv5s	CSP-ConvMixer	C3HB	OD-Head	EIoU	Params (×10 ⁶)	FLOPs (×10 ⁶)	mAP_{50} (%)	mAP ₇₅ (%)
	\checkmark	_			_	7.03	15.8	27.5	13.5
	\checkmark	\checkmark	_	—	_	32.36	111.2	32.9	17.6
	\checkmark	—	\checkmark	—	_	44.13	98.2	29.7	15.8
	\checkmark	—	_	\checkmark	_	8.79	21.6	28.3	15.1
	\checkmark	—	_	—	\checkmark	7.03	15.8	28.5	15.1
	\checkmark	\checkmark	\checkmark	_	_	28.83	97.0	33.4	17.8
	\checkmark	\checkmark	\checkmark	\checkmark	_	31.49	122.7	34.2	18.6
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	31.49	122.7	35.1	19.3
-									

为了更加直观地展示出 CHD-YOLOv5 算法检测 效果的优越性,选取部分图像进行对比.考虑到无人机 图像易受光线变化影响、小目标密集等特点,选取具 有代表性的4种不同场景图片对传统的YOLOv5模型 和改进后的 CHD-YOLOv5 模型进行检测效果对比. 图 7 为日常普通简单场景拍摄图片,图 8 为大量目标 有遮挡的场景, 图 9 为小目标较为密集的场景, 图 10 为光线昏暗的夜间场景. (a) 组图片为 VisDrone2019 数 据集原始图片, (b) 组图片为 YOLOv5 算法检测效果 图, (c) 组图片为改进后的 CHD-YOLOv5 算法检测效 果图.算法的效果图明显展示出在同一场景下,YOLOv5 算法容易忽略边缘区域的目标信息,在有遮挡或小目 标密集的位置,以及光线昏暗的情况下,出现漏检和误 检现象, 而改进后的 CHD-YOLOv5 模型对小目标的漏 检误检情况有所减弱, 且在光线不良的夜间场景下小 目标检测效果也有所增强,提升了模型检测精度.因此,

改进后的算法检测效果更好,检测到的目标信息更加 细节,具有良好的鲁棒性,在无人机图像小目标的检测 中更有优势.

(b) YOLOv5s

图 7 简单场景检测效果对比

(c) CHD-YOLOv5

图 8 有遮挡场景检测效果对比

(b) YOLOv5s (c) CHD-YOLOv5

图 9 密集场景检测效果对比

(a) 原图
(b) YOLOv5s
(c) CHD-YOLOv5
图 10 夜间场景检测效果对比

2.5 模型对比实验分析

为了验证本文改进后算法对无人机图像小目标检测的有效性,本文在VisDrone2019数据集上采用 YOLOv5s-6.2作为基线模型,与YOLOv5s、YOLOv7tiny、YOLOv8s、YOLOX和最新的YOLOv8s进行对 比试验,各算法的实验数据如表6所列.

由于 VisDrone2019 数据集无人机图像分辨率较 大,小目标数量众多,存在大量形似物,目标特征极易 弱化,造成漏检错检情况,检测精度普遍较低,基线算 法 mAP₅₀ 值为 27.5%, mAP₇₅ 值为 13.5%, 改进后的 CHD-YOLOv5 模型 mAP50 值为 35.1%, mAP75 值为 19.3%, 较基线算法 YOLOv5s 的 mAP₅₀ 值提升了 7.6%, mAP₇₅ 值提升了 5.8%; 与其他模型相比, 较 YOLOv7-tiny 的 mAP50 值提升了 4.9%, mAP75 值提升 了 4.1%; 较 YOLOX 的 mAP50 值提升了 7.4%, mAP75 值提升了 5.2%; 较 YOLOv8s 的 mAP₅₀ 值提升了 2.4%, mAP75 值提升了 0.1%; 较 Light-RCNN 的 mAP50 值提 升了 12.5%, mAP75 值提升了 7.0%; 较 Faster-RCNN 的 mAP₅₀ 值提升了 9.2%, mAP₇₅ 值提升了 5.6%; 较 BA-YOLOv5s 的 mAP50 值提升了 1.7%. 相比于基线算 法 YOLOv5s, CHD-YOLOv5 模型在个别检测精度较 高的类别上,精度值有略微下降,但在检测精度较低的 小目标数量较多的类别上,精度值均有提升,其中单类 别精度值提升最大的高达 50.31%. 且 mAP 50 值和 mAP 75 值均有明显提升.相比于其他模型,虽然本文提出的 CHD-YOLOv5 模型的模型大小和参数量都有所增加, 但是模型性能有明显增强,对无人机小目标图像的检 测效果更好.综合各项指标观察,改进后模型综合性能 更好,有明显的优越性.

表 6 不同算法在 VisDrone2019 测试集上的对比分析 (%)

算法	Pedestrain	People	Bicycle	Car	Van	Truck	Tricycle	Awning-tricycle	Bus	Motor	mAP_{50}	mAP_{75}
YOLOv5s	44.1	40.3	7.83	72.3	13.3	28.4	15.3	4.57	5.99	43.2	27.5	13.5
YOLOv7-tiny	35.4	33.0	4.49	74.5	33.4	21.5	16.0	7.56	40.2	39.9	30.6	15.2
YOLOXs	15.3	11.7	12.3	50.5	41.4	30.5	21.8	16.7	39.7	22.6	27.7	14.1
YOLOv8s	28.2	15.1	11.1	72.7	38.1	41.0	7.8	17.8	58.6	30.3	33.1	19.2
Light-RCNN	19.3	20.6	7.2	52.8	28.7	18.3	12.6	8.6	38.5	19.5	22.6	12.3
Faster-RCNN	20.9	18.2	8.2	56.3	26.5	23.4	13.2	9.1	40.3	21.6	25.9	13.7
BA-YOLOv5s	32.5	18.8	11.9	74.8	35.6	39.0	17.6	18.2	57.6	28.5	33.4	_
CHD-YOLOv5	36.6	23.6	12.4	76.8	40.0	26.8	18.5	18.4	56.3	31.8	35.1	19.3

注: 加粗数据为最优值

2.6 泛化能力测试

为了证明 CHD-YOLOv5 模型的泛化能力,另外选 取 DOTA 1.0 数据集和 HRSID 数据集进行实验. CHD-YOLOv5 算法在 DOTA 1.0 数据集和 HRSID 数据集的 检测结果集如表 7 所列.

2017年11月28日,武汉大学在 arXiv 上发布了 DOTA 数据集,2018年6月又在 IEEE 计算机视觉和 模式识别会议 (CVPR) 上发布了 DOTA 数据集.DOTA 1.0 是用于航空图像中目标检测的大规模数据集,共包 含图片2806张,图片来源于 Google Earth 不同传感器 和平台的不同尺度、方向和形状的物体,图片的像素 尺寸在 800×800 到 4000×4000 的范围内. DOTA 图像 的目标类别 15 个常见类别,数据集包含由任意四边形 标记的 188,282 个实例. HRSID 数据集于 2020 年 1 月 由电子科技大学发布的, HRSID 数据集是用于船舶检 测、语义分割和实例分割任务的高分辨率 SAR 图像 数据集,共包含 SAR 图像 5 604 张,完全标注的 ship 实例 16951 个. HRSID 数据集包括不同分辨率的 SAR 图像、极化、海况、海域和沿海港口. DOTA 1.0 数据 集是航空影像图像,尺度变化性较大,小目标数量多且 分布密集, HRSID 数据集是高分辨率舰船图像,目标单 一.实验数据表明, CHD-YOLOv5 算法在 DOTA 1.0 数

据集和 HRSID 数据集上的检测效果均有提升, CHD-YOLOv5 模型具有良好的泛化能力.

	лю-тосоvу µ. 2	- 一 奴加未工的天孤汨木 (70)					
Detect	Class	YO	LOv5s	CHD-YOLOv5			
Dataset	Class	AP	mAP_{50}	AP	mAP_{50}		
	Plane	66.3		68.8			
	Ship	84.9		86.9			
	Storage tank	91.0		92.3			
	Baseball diamond	69.5		80.2			
	Tennis court	87.4		89.6			
DOTA 1.0	Basketball court	84.7		84.5			
	Ground track field	62.0		60.9			
	Harbor	46.4	69.4	49.6	71.6		
	Bridge	93.2		93.7			
	Large vehicle	63.2		62.7			
	Small vehicle	76.1		75.3			
	Helicopter	56.0		58.7			
	Roundabout	62.2		69.8			
	Soccer ball field	462		47.3			
	Swimming pool	52.5		53.5			
HRSID	Ship	90.9	90.9	93.7	93.7		

表 7 CHD-YOLOv5 在 2 个数据集上的实验结果 (%)

3 结论与展望

由于无人机图像背景复杂、小目标较多,由于无 人机图像小目标检测易出现漏检误检现象,本文提出 了一种高阶深度可分离无人机图像小目标检测算法以 增强模型检测效果. 该算法在主干网络部分, 融合 ConvMixer 与 CSPNet 结构, 增大模型感受野, 大大提 升了模型检测性能;结合 C3 模块与递归门控卷积构 建 C3HB 模块, 使模型的高阶空间交互能力提升, 增强 了模型的特征信息提取和表达能力,提高算法对无人 机图像小目标的高阶建模能力;此外,将 YOLOv5 算法 原本的预测部分替换为精简的解耦头部,加快网络收 敛速度,提高网络的收敛效果;最后,边界框损失函数 采用 EIoU, 分别对预测和真实框之间宽和高的预测结 果进行惩罚,提高收敛速度和边界框定位准确度,精确 定位检测框.在 VisDrone2019 数据集上的实验结果有 效表明,本文所提出的模型有效提升了检测精度,大大 降低了无人机图像小目标的错检率和漏检率,模型性 能提升明显,但模型的参数量有所增加,在轻量化方面 仍有进步空间,在以后的工作中,需继续研究探索如何 实现一个实时的高性能检测模型.本文算法可充分与 实际结合,在工农业、城市规划等实际应用中有较高 实用价值.

参考文献

1 朱华勇,牛轶峰,沈林成,等.无人机系统自主控制技术研

究现状与发展趋势.国防科技大学学报,2010,32(3): 115-120.[doi:10.3969/j.issn.1001-2486.2010.03.022]

- 2 徐光达, 毛国君. 多层级特征融合的无人机航拍图像目标 检测. 计算机科学与探索, 2023, 17(3): 635-645. [doi: 10. 3778/j.issn.1673-9418.2205114]
- 3 向昌成,黄成兵,罗平,等. 基于 YOLO 算法的无人机航拍 图像车辆目标检测系统研究. 计算机与数字工程, 2021, 49(8): 1566–1570. [doi: 10.3969/j.issn.1672-9722.2021.08. 012]
- 4 冒国韬,邓天民,于楠晶.基于多尺度分割注意力的无人机 航拍图像目标检测算法.航空学报,2023,44(5):326738.
- 5 Girshick R, Donahue J, Darrell T, *et al.* Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580–587.
- 6 Girshick R. Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 1440–1448.
- 7 Ren SQ, He KM, Girshick R, *et al.* Faster R-CNN: Towards real-time object detection with region proposal networks. Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2015. 91–99.
- 8 Wang JL, Luo JX, Liu B, *et al.* Automated diabetic retinopathy grading and lesion detection based on the modified R-FCN object-detection algorithm. IET Computer Vision, 2020, 14(1): 1–8. [doi: 10.1049/iet-cvi.2018.5508]
- 9 Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multiBox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016. 21–37.
- Redmon J, Divvala S, Girshick R, *et al.* You only look once: unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 779–788.
- Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 6517–6525.
- 12 Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
- 13 Bochkovskiy A, Wang CY, Lia OHM. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020.
- 14 Lin TY, Goyal P, Girshick R, et al. Focal loss for dense

object detection. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 2999–3007.

- 15 程江川, 王伟, 康林, 等. 基于改进 YOLOv5 与嵌入式平台 的多旋翼无人机检测算法. 兵工自动化, 2023, 42(4): 74–78.
- 16 李利霞, 王鑫, 王军, 等. 基于特征融合与注意力机制的无 人机图像小目标检测算法. 图学学报, 2023, 44(4): 658– 666.
- 17 韩俊, 袁小平, 王准, 等. 基于 YOLOv5s 的无人机密集小目 标检测算法. 浙江大学学报 (工学版), 2023, 57(6): 1224-1233
- 18 李杨, 武连全, 杨海涛, 等. 一种无人机视角下的小目标检测算法. 红外技术, 2023, 45(9): 925–931.
- 19 奉志强, 谢志军, 包正伟, 等. 基于改进 YOLOv5 的无人机 实时密集小目标检测算法. 航空学报, 2023, 44(7): 327106.
- 20 Ng D, Chen YQ, Tian B, *et al.* Convmixer: Feature interactive convolution with curriculum learning for small footprint and noisy far-field keyword spotting. Proceedings of the 2022 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022. 3603–3607.

- 21 Rao YM, Zhao WL, Tang YS, *et al.* Hornet: Efficient highorder spatial interactions with recursive gated convolutions. Proceedings of the 36th Conference on Neural Information Processing Systems. New Orleans: OpenReview.net, 2022. 10353–10366.
- 22 Zhang YF, Ren WQ, Zhang Z, *et al.* Focal and efficient IoU loss for accurate bounding box regression. Neurocomputing, 2022, 506: 146–157. [doi: 10.1016/j.neucom.2022.07.042]
- 23 Wang CY, Liao HYM, Wu YH, *et al.* CSPNet: A new backbone that can enhance learning capability of CNN. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020. 1571–1580.
- 24 Ge Z, Liu ST, Wang F, *et al.* YOLOX: Exceeding YOLO Series in 2021. arXiv:2107.08430, 2021.

(校对责编:牛欣悦)