基于胶质瘤图像的原始数据集构建及应用研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省自然科学基金(2021-MS-272); 辽宁师范大学校级本科教学改革研究与实践项目(LSJG202206)


Construction and Application of Original Data Set Based on Glioma Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 增强出版
  • |
  • 文章评论
    摘要:

    胶质瘤是在世界范围内致死率排行比较靠前的几种肿瘤之一, 是一种死亡率高、容易复发, 对身体危害极大的恶性疾病. 目前, 核磁共振成像(magnetic resonance imaging, MRI)技术因其成像效果清晰, 不同软组织之间对比鲜明等特点, 现已成为诊断患者胶质瘤较为常用的一种医学手段. 基于胶质瘤原始数据集缺少这一情况, 与辽宁省肿瘤医院合作, 对该医院300名胶质瘤患者MRI图像进行分析, 通过病变判定、病变定位和病变定性3个步骤对原始数据进行分类并进一步分级, 建立胶质瘤原始数据集. 为了证明其后续应用性, 通过分析和实验, 证明原始数据集可被用于图像分类及分割, 并为肿瘤的生长与重建提供图像数据, 对胶质瘤的临床研究和应用给予充分的帮助.

    Abstract:

    Glioma is one of the most lethal tumors in the world. It is a malignant disease with high mortality, easy recurrence, and great harm to the body. At present, magnetic resonance imaging (MRI) technology, due to its characteristics of clear imaging effect and sharp contrast between different soft tissues, has become a commonly used medical method to diagnose patients with glioma. Given the lack of original glioma data set, this study, in cooperation with Liaoning Tumor Hospital, analyzed MRI images of 300 glioma patients in the hospital. The original glioma data set is established by classifying and further grading the original data through lesion determination, lesion location, and lesion qualitative. Analysis and experiment are conducted to verify its subsequent application. It is proved that the original data set can be used for image classification and segmentation, providing image data for tumor growth and reconstruction and sufficient help for clinical research and application of glioma.

    参考文献
    相似文献
    引证文献
引用本文

于永成,姜雨萌,方玲玲.基于胶质瘤图像的原始数据集构建及应用研究.计算机系统应用,,():1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-18
  • 最后修改日期:2022-06-20
  • 录用日期:
  • 在线发布日期: 2022-09-14
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号