基于基站辅助的电力5G终端GPS欺骗检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家电网有限公司总部管理科技项目(SGZJXT00JSJS2000455)


GPS Spoofing Detection with Base Station Assistance in Power 5G Terminals
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电力能源的安全在国家安全中占有重要的地位. 随着电力5G通信技术的发展, 大量电力终端产生定位需求. 传统GPS定位方法存在易受欺骗的问题, 如何有效提升GPS定位的安全性成为一个亟待研究的问题. 本文提出了一种基于基站辅助的电力5G终端GPS欺骗检测算法, 利用安全性较高的基站定位来检验可能被欺骗的GPS定位, 并且引入了一致性因数用来描述GPS定位结果和基站定位结果的一致性. 通过计算一致性因数, 如果大于设定的阈值则判断发生欺骗, 反之则GPS工作正常. 实验表明, 在使用本论文模型情况下, 本算法的准确率为99.98%, 优于传统机器学习分类算法. 此外, 本方法在运行速度上相较于传统机器学习分类算法也有一定程度的提升.

    Abstract:

    The security of electric energy plays an important role in national security. With the development of power 5G communication, a large number of power terminals have positioning demand. The traditional global positioning system (GPS) is vulnerable to spoofing. How to improve the security of GPS effectively has become an urgent problem. This study proposes a GPS spoofing detection algorithm with base station assistance in power 5G terminals. It uses the base station positioning with high security to verify the GPS positioning that may be spoofed and introduces the consistency factor (CF) to measure the consistency between GPS positioning and base station positioning. If CF is greater than a threshold, the GPS positioning is classified as spoofed. Otherwise, it is judged as normal. The experimental results show that the accuracy of the algorithm is 99.98%, higher than that of traditional classification algorithms based on machine learning. In addition, our scheme is also faster than those algorithms.

    参考文献
    相似文献
    引证文献
引用本文

龚亮亮,陈振昂,张影,吕超,何莉媛,罗先南,秦中元.基于基站辅助的电力5G终端GPS欺骗检测.计算机系统应用,,():1-6

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-26
  • 最后修改日期:2021-10-25
  • 录用日期:
  • 在线发布日期: 2022-03-31
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号