深度残差频率自适应的DEM超分辨重建
作者:
基金项目:

陕西省住房城乡建设科技计划 (2020-K09); 陕西省教育厅协同创新中心项目(23JY038)


Deep Residual Frequency-adaptive DEM Super-resolution Reconstruction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    目前超分辨率重建技术运用于诸多场景, 但对于数字高程模型(digital elevation model, DEM)的重建存在许多挑战, 针对无法充分利用DEM复杂地形特征导致的细节缺失和失真问题, 提出了深度残差频率自适应的DEM超分辨重建模型, 由多个高低频特征提取模块组成残差网络结构, 提升对DEM特征的整体感知能力, 并加入频率选择特征提取模块, 增强对复杂地形特征的识别和捕捉能力, 其次在模型中加入了空洞空间金字塔池化, 通过融合多尺度信息, 改善重建质量并充分保留地形特征的细节和结构, 最终在梯度域和高度域双重约束下完成超分辨率重建. 实验结果表明, 在以两种精度的陕西秦岭高程图作为实验数据下, 深度残差频率自适应DEM超分辨率模型相较于其他先进模型, 在各个指标上均取得了提升, 重建后的DEM细节更加丰富、纹理更加清晰.

    Abstract:

    Currently, super-resolution reconstruction technology is applied in various fields. However, digital elevation model (DEM) reconstruction presents numerous challenges. To address the issues of detail loss and distortion caused by inadequate utilization of complex terrain features in DEM, this study proposes a deep residual frequency-adaptive DEM super-resolution reconstruction model. The model consists of multiple high and low-frequency feature extraction modules forming a residual network structure, enhancing the overall perception of DEM features. Additionally, a frequency selection feature extraction module is integrated to improve the identification and capture of complex terrain features. The model also incorporates atrous spatial pyramid pooling, which merges multi-scale information to enhance reconstruction quality and retain detailed terrain features and structures. Final super-resolution reconstruction is completed under dual constraints in the gradient and height domains. Experimental results demonstrate that using elevation maps of the Qinling Mountains in Shaanxi with two different accuracies as test data, the deep residual frequency-adaptive DEM super-resolution model outperforms other advanced models across various metrics. Reconstructed DEMs exhibit richer details and clearer textures.

    参考文献
    [1] Xiong LY, Tang G, Yang X, et al. Geomorphology-oriented digital terrain analysis: Progress and perspectives. Journal of Geographical Sciences, 2021, 31(3): 456–476.
    [2] Borzi G, Roig A, Tanjal C, et al. Flood hazard assessment in large plain basins with a scarce slope in the Pampean Plain, Argentina. Environmental Monitoring and Assessment, 2021, 193(4): 177.
    [3] Wang HX, Cheng YM, Liu N, et al. An illumination-invariant shadow-based scene matching navigation approach in low-altitude flight. Remote Sensing, 2022, 14(16): 3869.
    [4] An R, Lee JA. CAMDLES: CFD-DEM simulation of microbial communities in spaceflight and artificial microgravity. Life, 2022, 12(5): 660.
    [5] Li ZX, Zhu XH, Yao SL, et al. A large scale digital elevation model super-resolution Transformer. International Journal of Applied Earth Observation and Geoinformation, 2023, 124: 103496.
    [6] Yao S, Cheng YM, Yang F, et al. A continuous digital elevation representation model for DEM super-resolution. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 208: 1–13.
    [7] Wang H, Xiong LY, Hu GH, et al. DEM super-resolution framework based on deep learning: Decomposing terrain trends and residuals. International Journal of Digital Earth, 2024, 17(1): 2356121.
    [8] Lin R, Mei G, Xu N. Accurate and automatic mapping of complex debris-covered glacier from remote sensing imagery using deep convolutional networks. Geological Journal, 2023 (published online).
    [9] Demiray BZ, Sit M, Demir I. D-SRGAN: DEM super-resolution with generative adversarial networks. SN Computer Science, 2021, 2(1): 48.
    [10] Vasile I, Tudor E, Sburlan IC, et al. Experimental validation of LiDAR sensors used in vehicular applications by using a mobile platform for distance and speed measurements. Sensors, 2021, 21(23): 8147.
    [11] Lenda G, Borowiec N, Marmol U. Study of the precise determination of pipeline geometries using UAV scanning compared to terrestrial scanning, aerial scanning and UAV photogrammetry. Sensors, 2023, 23(19): 8257.
    [12] Arroyo-Mora JP, Kalacska M, Roghani A, et al. Assessment of UAS photogrammetry and planet imagery for monitoring water levels around railway tracks. Drones, 2023, 7(9): 553.
    [13] Bagheri H, Schmitt M, Zhu XX. Fusion of multi-sensor-derived heights and OSM-derived building footprints for urban 3D reconstruction. ISPRS International Journal of Geo-information, 2019, 8(4): 193.
    [14] Shen HF, Meng XC, Zhang LP. An integrated framework for the spatio-temporal-spectral fusion of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7135–7148.
    [15] Kováčová G, Rudloff B. Convex projection and convex multi-objective optimization. Journal of Global Optimization, 2022, 83(2): 301–327.
    [16] Zhang X, Liu Q, Li XM, et al. Non-local feature back-projection for image super-resolution. IET Image Processing, 2016, 10(5): 398–408.
    [17] He Y, Yap KH, Chen L, et al. A soft MAP framework for blind super-resolution image reconstruction. Image and Vision Computing, 2009, 27(4): 364–373.
    [18] Chen ZX, Wang XW, Xu ZK, et al. Convolutional neural network based DEM super resolution. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague: ISPRS, 2016. 247–250.
    [19] Xu ZK, Chen ZX, Yi WW, et al. Deep gradient prior network for DEM super-resolution: Transfer learning from image to DEM. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 80–90.
    [20] Jiao DL, Wang DJ, Lv HY, et al. Super-resolution reconstruction of a digital elevation model based on a deep residual network. Open Geosciences, 2020, 12(1): 1369–1382.
    [21] Lin X, Zhang QQ, Wang HY, et al. A DEM super-resolution reconstruction network combining internal and external learning. Remote Sensing, 2022, 14(9): 2181.
    [22] Zhou AN, Chen YM, Wilson JP, et al. A multi-terrain feature-based deep convolutional neural network for constructing super-resolution DEMs. International Journal of Applied Earth Observation and Geoinformation, 2023, 120: 103338.
    [23] Zhao H, Gallo O, Frosio I, et al. Loss functions for image restoration with neural networks. IEEE Transactions on Computational Imaging, 2017, 3(1): 47–57.
    [24] Keys R. Cubic convolution interpolation for digital Image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153–1160.
    [25] Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu: IEEE, 2017. 136–144.
    [26] Zhang YL, Li KP, Li K, et al. Image super-resolution using very deep residual channel attention networks. Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich: Springer, 2018. 286–301.
    [27] Liang J, Cao J, Sun GL, et al. SwinIR: Image restoration using Swin Transformer. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Montreal: IEEE, 2021. 1833–1844.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李智杰,米德源,李昌华,张颉,董玮.深度残差频率自适应的DEM超分辨重建.计算机系统应用,2024,33(12):123-130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-24
  • 最后修改日期:2024-06-17
  • 在线发布日期: 2024-10-31
文章二维码
您是第11371949位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号