多尺度融合的轻量级钢材表面缺陷检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62173171)


Lightweight Steel Surface Defect Detection with Multiscale Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    钢材表面缺陷的检测质量直接影响工业生产安全性和机器性能质量, 现实工厂钢材质量把控受限于设备条件, 在实现高精度强实时的检测效果仍面临着挑战. 为了解决这一问题, 提出一种多尺度融合的轻量级YOLOv8n检测算法. 首先引入一种结合HGnetv2与RepConv的轻量级多尺度融合主干网络(RepHGnetv2), 提高Backbone的特征提取能力与泛化能力同时降低了模型的复杂度; 在Head部分, 利用ADown下采样模块替换原算法的普通卷积(Conv), 降低计算量并提高语义保留能力; 最后将原算法的Loss函数替换为SlideLoss, 改善样本之间不平衡的问题. 在NEU-DET数据集上进行消融与对比实验, 改进算法与原算法相比, mAP@0.5提升6.7%, Precision提升9.3%, 模型大小下降25.5%, 计算量下降了17.2%, FPS也有一定的提升; 并在VOC2012数据集上进行了通用性对比实验, 实验结果表明改进算法可以有效提高缺陷检测精度与效率, 同时具有较好的通用性.

    Abstract:

    The quality of steel surface defect inspection directly affects industrial production safety and machine performance. However, in real factories, steel quality control is limited by equipment conditions, making it challenging to achieve high-precision and real-time inspection. To solve this problem, a lightweight YOLOv8n detection algorithm with multi-scale fusion is proposed. Firstly, a lightweight multi-scale fusion backbone network (RepHGnetv2) is introduced, combining HGnetv2 and RepConv to improve the feature extraction and generalization capabilities of Backbone and reduce the complexity of the model. In the Head part, the ordinary convolution of the original algorithm is replaced with the ADown downsampling module, which reduces computational complexity and improves semantic retention. Finally, the loss function of the original algorithm is replaced by SlideLoss to address sample imbalance. Ablation and comparison experiments are conducted on the NEU-DET dataset. Compared with the original algorithm, the improved algorithm increases precision by 9.3%, reduces the model size by 25.5%, decreases computational complexity by 17.2%, and improves FPS to a certain extent. Comparative experiments are conducted on the VOC2012 dataset to evaluate the generalizability of the improved algorithm, and the results show that the improved algorithm exhibits strong generalizability and effectively improves the accuracy and efficiency of defect detection.

    参考文献
    相似文献
    引证文献
引用本文

杨本臣,李世熙,金海波,康洁.多尺度融合的轻量级钢材表面缺陷检测.计算机系统应用,2024,33(11):58-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-22
  • 最后修改日期:2024-05-29
  • 录用日期:
  • 在线发布日期: 2024-09-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号