边缘增强结合多尺度信息融合的皮肤病变分割
作者:
基金项目:

国家自然科学基金面上项目(62173171)


Skin Lesion Segmentation Based on Edge Enhancement Combined with Multi-scale Information Fusion
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对皮肤病灶大小不一、与周围皮肤对比度低、边界模糊不规则、存在伪影及毛发干扰等问题, 本文提出一种边缘增强结合多尺度信息融合的皮肤病变分割算法, 该算法由编码器、多尺度感知模块、边缘增强模块、轻量化解码器组成. 首先在编码器中构建Transformer模块以提取全局信息, 使用卷积操作以提取局部信息; 其次设计多尺度感知模块, 采用密集连接结构的门控空洞卷积金字塔模块来融合多尺度特征; 接着构建边缘增强模块, 利用深层特征促进对边缘特征的探索以更好的保留细节和边缘信息; 最后设计轻量化解码器, 采用CARAFE轻量化算子进行上采样, 在使用相对较少参数的情况下保持较高的分割精度. 在公开数据集ISIC2016和ISIC2018上做对比实验, 结果表明, 本文算法分割精度高于其他流行算法.

    Abstract:

    To address the problems of skin lesions, such as varied sizes, low contrast with surrounding skin, blurred and irregular boundaries, artifacts, and hair interference, this study proposes a skin lesion segmentation algorithm that combines edge enhancement with multi-scale information fusion. The algorithm consists of an encoder, a multi-scale sensing module, an edge enhancement module, and a lightweight decoder. Firstly, a Transformer module is built in the encoder to extract global information, and convolution operations are used to extract local information. Secondly, a multi-scale sensing module is designed to integrate multi-scale features using a gated atrous convolution pyramid module with a dense connection structure. An edge enhancement module is constructed, utilizing deep features to promote the exploration of edge features to better retain details and edge information. Finally, a lightweight decoder is designed, employing the CARAFE lightweight operator for upsampling, to maintain high segmentation accuracy with fewer parameters. Comparative experiments on open data sets ISIC2016 and ISIC2018 show that the segmentation accuracy of the proposed algorithm is higher than that of other popular algorithms.

    参考文献
    [1] Jin QG, Cui H, Sun CM, et al. Cascade knowledge diffusion network for skin lesion diagnosis and segmentation. Applied Soft Computing, 2021, 99: 106881.
    [2] Xia SR, Krishnan SM, Tjoa MP, et al. A novel methodology for extracting colon’s lumen from colonoscopic images. Journal of Systemics, Cybernetics and Informatics, 2003, 1(2): 7–12.
    [3] Celebi ME, Iyatomi H, Schaefer G, et al. Lesion border detection in dermoscopy images. Computerized Medical Imaging and Graphics, 2009, 33(2): 148–153.
    [4] Moscheni F, Bhattacharjee S, Kunt M. Spatio-temporal segmentation based on region merging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(9): 897–915.
    [5] 王学松, 周明全, 樊亚春, 等. 彩色图像色度距离权值的图论分割算法. 中国图象图形学报, 2011, 16(2): 221–226.
    [6] Dai DW, Dong CX, Xu SH, et al. Ms RED: A novel multi-scale residual encoding and decoding network for skin lesion segmentation. Medical Image Analysis, 2022, 75: 102293.
    [7] Wu HS, Chen SH, Chen GL, et al. FAT-Net: Feature adaptive Transformers for automated skin lesion segmentation. Medical Image Analysis, 2022, 76: 102327.
    [8] Zhang YD, Liu HY, Hu Q. TransFuse: Fusing Transformers and CNNs for medical image segmentation. Proceedings of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Strasbourg: Springer, 2021. 14–24.
    [9] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 3431–3440.
    [10] Yuan YD, Chao M, Lo YC. Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance. IEEE Transactions on Medical Imaging, 2017, 36(9): 1876–1886.
    [11] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234–241.
    [12] Zhou ZW, Siddiquee MMR, Tajbakhsh N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856–1867.
    [13] Ni ZL, Bian GB, Zhou XH, et al. RAUNet: Residual attention U-Net for semantic segmentation of cataract surgical instruments. Proceedings of the 26th International Conference on Neural Information Processing. Sydney: Springer, 2019. 139–149.
    [14] Gu ZW, Cheng J, Fu HZ, et al. CE-Net: Context encoder network for 2D medical image segmentation. IEEE Transactions on Medical Imaging, 2019, 38(10): 2281–2292.
    [15] Jha D, Riegler MA, Johansen D, et al. DoubleU-Net: A deep convolutional neural network for medical image segmentation. Proceedings of the 33rd IEEE International Symposium on Computer-based Medical Systems. Rochester: IEEE, 2020. 558–564.
    [16] Tong XZ, Wei JY, Sun B, et al. ASCU-Net: Attention gate, spatial and channel attention U-Net for skin lesion segmentation. Diagnostics, 2021, 11(3): 501.
    [17] Zuo Q, Chen SY, Wang ZF. R2AU-Net: Attention recurrent residual convolutional neural network for multimodal medical image segmentation. Security and Communication Networks, 2021, 2021(1): 6625688.
    [18] Chen JN, Lu YY, Yu QH, et al. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv:2102.04306, 2021.
    [19] 邸拴虎, 杨文瀚, 廖苗, 等. 基于RA-Unet的CT图像肝脏肿瘤分割. 仪器仪表学报, 2022, 43(8): 65–72.
    [20] 崔少国, 文浩, 张宇楠, 等. 带有注意力机制的OCTA视网膜血管分割方法. 计算机工程与应用, 2023, 59(18): 163–171.
    [21] 梁礼明, 陈鑫, 周珑颂, 等. 基于U-Net多尺度自校准注意力视网膜分割算法. 计算机应用研究, 2023, 40(3): 943–948.
    [22] Le PT, Pham BT, Chang CC, et al. Anti-aliasing attention U-Net model for skin lesion segmentation. Diagnostics, 2023, 13(8): 1460.
    [23] Ruan JC, Xie MY, Gao JS, et al. EGE-UNet: An efficient group enhanced UNet for skin lesion segmentation. Proceedings of the 26th International Conference on Medical Image Computing and Computer-assisted Intervention. Vancouver: Springer, 2023. 481–490.
    [24] Wu RK, Liang PC, Huang X, et al. MHorUNet: High-order spatial interaction UNet for skin lesion segmentation. Biomedical Signal Processing and Control, 2024, 88: 105517.
    [25] Zhi YC, Bie HX, Wang JL, et al. Masked autoencoders with generalizable self-distillation for skin lesion segmentation. Medical & Biological Engineering & Computing, 2024: 1–15, doi: 10.1007/s11517-024-03086-z.
    [26] Zhu WH, Tian JY, Chen MZ, et al. MSS-UNet: A multi-spatial-shift MLP-based UNet for skin lesion segmentation. Computers in Biology and Medicine, 2024, 168: 107719.
    [27] Xu JS. HC-Mamba: Vision Mamba with hybrid convolutional techniques for medical image segmentation. arXiv:2405.05007, 2024.
    [28] Nguyen VT, Pham VT, Tran TT. AC-MambaSeg: An adaptive convolution and Mamba-based architecture for enhanced skin lesion segmentation. arXiv:2405.03011, 2024.
    [29] 陶惜婷, 叶青. 融合CNN和Transformer的并行双分支皮肤病灶图像分割. 计算机应用研究, 2024, 41(8): 2554–2560.
    [30] Dai JF, Qi HZ, Xiong YW, et al. Deformable convolutional networks. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 764–773.
    [31] Yang LX, Zhang RY, Li LD, et al. SimAM: A simple, parameter-free attention module for convolutional neural networks. Proceedings of the 38th International Conference on Machine Learning. PMLR, 2021. 11863–11874.
    [32] Chollet F. Xception: Deep learning with depthwise separable convolutions. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 1800–1807.
    [33] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 2261–2269.
    [34] 谭岩杰, 陈玮, 尹钟. 门控空洞卷积与级联网络中文命名实体识别. 小型微型计算机系统, 2023, 44(6): 1198–1203.
    [35] Sun YJ, Wang S, Chen CLZ, et al. Boundary-guided camouflaged object detection. Proceedings of the 31st International Joint Conference on Artificial Intelligence. Vienna: ijcai.org, 2022. 1335–1341.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

齐向明,张志伟.边缘增强结合多尺度信息融合的皮肤病变分割.计算机系统应用,2024,33(11):157-166

复制
分享
文章指标
  • 点击次数:179
  • 下载次数: 1091
  • HTML阅读次数: 540
  • 引用次数: 0
历史
  • 收稿日期:2024-03-14
  • 最后修改日期:2024-04-10
  • 在线发布日期: 2024-09-24
文章二维码
您是第11184380位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号