基于MCGAN模型的降水临近预报
作者:
基金项目:

国家自然科学基金 (41575155)


Precipitation Nowcasting Based on MCGAN Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在降水临近预报领域中, 现有基于深度学习的雷达回波外推方法存在一些缺点. 在图像质量方面, 预测图像模糊并缺乏小尺度细节, 在预测精度方面, 降水结果不够准确. 本文提出了一个多尺度生成对抗(MCGAN)模型, 该模型由多尺度卷积生成器和全卷积的判别器组成. 生成器部分采用编码器-解码器架构, 主要包含了多尺度卷积块和下采样门控单元. MCGAN模型使用动态时空变异性损失函数在生成对抗网络(GAN)框架下训练, 以达到更精准和更清晰的回波强度和分布预测效果. 模型的性能在上海市公共雷达数据集上进行了验证, 与主流深度学习模型相比, 本文所提模型在图像质量评估中的MSE指标上下降了11.15%, 在SSIM指标和PSNR指标上分别增加了8.99%、2.95%; 在预测精度评估中, CSI指标、POD指标、HSS指标上平均提高了11.92%、15.89%、9.01%, FAR指标平均降低了14.81%. 此外, 本文通过消融实验证明了MCGAN模型每个部件的作用.

    Abstract:

    In the field of precipitation nowcasting, the existing radar echo extrapolation methods based on deep learning have some shortcomings. In terms of image quality, the prediction images are indistinct and deficient in small-scale details, while in terms of prediction accuracy, the precipitation results are not accurate enough. This study proposes a multi-scale generative adversarial (MCGAN) model, which consists of a multi-scale convolutional generator and a fully convolutional discriminator. The generator part adopts an encoder-decoder architecture, which mainly includes multi-scale convolutional blocks and downsampling gating units. Using the dynamic spatiotemporal variability loss function, the MCGAN model is trained under the generative adversarial network (GAN) framework to achieve more accurate and clearer predictions of echo intensity and distribution. Verified in the Shanghai public radar dataset, the performance of the model in this study decreases by 11.15% in the MSE index in image quality evaluation, and increases by 8.99% and 2.95% in the SSIM index and PSNR index compared with the mainstream deep learning models, respectively. In the evaluation of prediction accuracy, the CSI, POD, and HSS indexes increase by 11.92%, 15.89%, and 9.01% on average, and the FAR index decreases by 14.81% on average. In addition, the role of each component of the MCGAN model is demonstrated by ablation experiments.

    参考文献
    [1] Gneiting T, Raftery AE. Weather forecasting with ensemble methods. Science, 2005, 310(2746): 248–249.
    [2] Ochoa-Rodriguez S, Wang LP, Willems P, et al. A review of radar-rain gauge data merging methods and their potential for urban hydrological applications. Water Resources Research, 2019, 55(8): 6356–6391.
    [3] Fulton RA, Breidenbach JP, Seo DJ, et al. The WSR-88D rainfall algorithm. Weather and Forecasting, 1998, 13(2): 377–395.
    [4] Crane RK. Automatic cell detection and tracking. IEEE Transactions on Geoscience Electronics, 1979, 17(4): 250–262.
    [5] Fang W, Zhang FH, Sheng VS, et al. SCENT: A new precipitation nowcasting method based on sparse correspondence and deep neural network. Neurocomputing, 2021, 448: 10–20.
    [6] Laroche S, Zawadzki I. Retrievals of horizontal winds from single-Doppler clear-air data by methods of cross correlation and variational analysis. Journal of Atmospheric and Oceanic Technology, 1995, 12(4): 721–738.
    [7] Zou HB, Wu SS, Shan JS, et al. A method of radar echo extrapolation based on TREC and barnes filter. Journal of Atmospheric and Oceanic Technology, 2019, 36(9): 1713–1727.
    [8] Bowler NEH, Pierce CE, Seed A. Development of a arecipitation nowcasting algorithm based upon optical flow techniques. Journal of Hydrology, 2004, 288(1–2): 74–91.
    [9] Woo WC, Wong WK. Operational application of optical flow techniques to radar-based rainfall nowcasting. Atmosphere, 2017, 8(3): 48.
    [10] Lanpher AS. Evaluation of the storm cell identification and tracking algorithm used by the WSR-88D [Honors Thesis]. New York: Cornell University, 2012. https://ecommons.cornell.edu/server/api/core/bitstreams/5bd186cd-8008-4483-ad96-19a4af0164dc/content.
    [11] Hu Y, Chen L, Wang ZB, et al. Towards a more realistic and detailed deep-learning-based radar echo extrapolation method. Remote Sensing, 2021, 14(1): 24.
    [12] Shi XJ, Chen ZR, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015. 802–810.
    [13] Shi XJ, Gao ZH, Lausen L, et al. Deep learning for precipitation nowcasting: A benchmark and a new model. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 5617–5627.
    [14] Wang YB, Long MS, Wang JM, et al. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 879–888.
    [15] Wang YB, Zhang JJ, Zhu HY, et al. Memory in memory: A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019. 9146–9154.
    [16] Ye YK, Gao F, Cheng W, et al. MSSTNet: A multi-scale spatiotemporal prediction neural network for precipitation nowcasting. Remote Sensing, 2023, 15(1): 137.
    [17] Tian L, Li XT, Ye YM, et al. A generative adversarial gated recurrent unit model for precipitation nowcasting. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 601–605.
    [18] Fang W, Pang L, Yi WN, et al. AttEF: Convolutional LSTM encoder-forecaster with attention module for precipitation nowcasting. Intelligent Automation & Soft Computing, 2021, 30(2): 453–466.
    [19] Trebing K, Sta?czyk T, Mehrkanoon S. SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture. Pattern Recognition Letters, 2021, 145: 178–186.
    [20] Gao ZY, Tan C, Wu LR, et al. SimVP: Simpler yet better video prediction. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022. 3170–3180.
    [21] Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014. 2672–2680.
    [22] Jing JR, Li Q, Ding XY, et al. AENN: A generative adversarial neural network for weather radar echo extrapolation. Proceedings of the 2019 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Nanjing: ISPRS, 2019. 89–94.
    [23] Gong AF, Li RD, Pan BX, et al. Enhancing spatial variability representation of radar nowcasting with generative adversarial networks. Remote Sensing, 2023, 15(13): 3306.
    [24] Chen L, Cao Y, Ma LM, et al. A deep learning-based methodology for precipitation nowcasting with radar. Earth and Space Science, 2020, 7(2): e2019EA000812.
    [25] Thangjai W, Niwitpong SA, Niwitpong S. Confidence intervals for the common coefficient of variation of rainfall in Thailand. PeerJ, 2020, 8: e10004.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘蕊,杜景林,许梦.基于MCGAN模型的降水临近预报.计算机系统应用,2024,33(11):68-78

复制
分享
文章指标
  • 点击次数:184
  • 下载次数: 1074
  • HTML阅读次数: 444
  • 引用次数: 0
历史
  • 收稿日期:2024-04-22
  • 最后修改日期:2024-05-20
  • 在线发布日期: 2024-09-24
文章二维码
您是第11371948位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号