结合相位对称与基于排序LSS的多模态遥感影像匹配
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖北省教育厅青年人才项目(Q20221108)


Multimodal Remote Sensing Image Matching Combining Phase Symmetry and Rank-based LSS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多模态遥感影像存在非线性辐射畸变的问题, 本文提出了一种结合相位对称特征与基于排序局部自相似性的多模态遥感影像匹配方法. 首先, 利用影像的局部相位信息构造相位对称图, 在此基础上利用加速分段测试特征提取算法(features from accelerated segment test, FAST)对相位对称图进行特征提取. 然后结合基于排序的局部自相似性与相位一致性构造一种新的特征描述符RPCLSS (combining rank, phase congruency and local self-similarity descriptor). 最后利用快速抽样一致性算法(fast sample consensus, FSC)进行误匹配点剔除. 将本文方法在公开的多源遥感影像数据集上与现有的5种先进匹配方法进行对比实验. 实验结果表明, 本文方法在正确匹配点数量、匹配精度和匹配正确率方面, 优于现有的先进多模态遥感影像匹配方法.

    Abstract:

    To address the issue of nonlinear radial distortion present in multimodal remote sensing images, this study proposes a method for matching multimodal remote sensing images that integrates phase symmetry features with rank-based local self-similarity. Initially, the local phase information of the images is utilized to construct a phase symmetry map, upon which feature extraction is performed using the features from the accelerated segment test (FAST) algorithm. Subsequently, a new feature descriptor named RPCLSS is constructed, which combines rank-based local self-similarity and phase congruency. Finally, the fast sample consensus (FSC) algorithm is employed to eliminate mismatched points. Comparative experiments are conducted on publicly available multi-source remote sensing image datasets, comparing the proposed method against five existing advanced matching methods. The results reveal that the proposed method outperforms these state-of-the-art methods in terms of the number of correct matching points, matching precision, and matching correctness.

    参考文献
    相似文献
    引证文献
引用本文

陈聪鹏,喻国荣,鲍海洲,陈璐莹,边小勇.结合相位对称与基于排序LSS的多模态遥感影像匹配.计算机系统应用,2024,33(10):56-65

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-18
  • 最后修改日期:2024-05-14
  • 录用日期:
  • 在线发布日期: 2024-08-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号