面向选矿设备的预测性维护系统
作者:
基金项目:

国家自然科学基金区域创新发展联合基金(U23A20309)


Predictive Maintenance System for Mineral Processing Equipment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    保障选矿设备的精准维护和稳定运行一直是矿山相关企业所面临的重要课题, 而研发设备预测性维护系统已成为降低设备维护成本、提升企业生产效率的重要手段. 分析了选矿设备预测性维护系统功能需求, 设计了基于微服务结构的预测性维护系统架构和总体功能结构, 深入阐述了系统关键技术, 提出了基于多尺度CNN融合注意力机制的设备健康状态评估模型, 以及基于CNN和BiLSTM的电流趋势融合预测模型, 为设备预测性维护系统的构建提供了技术支撑. 在鞍钢集团关宝山矿业有限公司对完成的系统进行了应用示范, 并对提出的模型进行了测试. 结果表明提出的模型具有较高的准确性和健壮性, 优于现有模型; 完成的系统能够提供精准的设备维护计划, 降低了设备维护成本, 并提升了企业生产效率.

    Abstract:

    Ensuring the precise maintenance and stable operation of mineral processing equipment has always been an important challenge for mining-related enterprises while developing predictive maintenance systems for equipment has become a crucial means to reduce maintenance costs and improve production efficiency. This study analyzes the functional requirements of predictive maintenance systems, designs architecture and overall functional structure for a predictive maintenance system based on a micro-service architecture, and elaborates on the key technologies of the system. Moreover, the study proposes an evaluation model for equipment health status based on a multi-scale CNN fusion attention mechanism, as well as a prediction model for current trend fusion based on CNN and BiLSTM, to support the construction of the predictive maintenance system. The completed system has been applied at Ansteel Group Guanbaoshan Mining Co. Ltd., where the proposed model undergoes testing. The results show that the proposed model outperforms existing models with its high accuracy and robustness. The developed system can provide precise equipment maintenance plans, reduce equipment maintenance costs, and improve enterprise production efficiency.

    参考文献
    [1] 李莎莎, 杜超. 浅析矿山机电设备的管理与维护. 中国设备工程, 2023(18): 87–89.
    [2] Wen YX, Fashiar Rahman M, Xu HL, et al. Recent advances and trends of predictive maintenance from data-driven machine prognostics perspective. Measurement, 2022, 187: 110276.
    [3] Ou MY, Zhang RF, Shao ZF, et al. A novel approach based on semi-empirical model for degradation prediction of fuel cells. Journal of Power Sources, 2021, 488: 229435.
    [4] Liu MD, Ding L, Bai YL. Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction. Energy Conversion and Management, 2021, 233: 113917.
    [5] Chan KS, Enright MP, Moody JP, et al. Life prediction for turbopropulsion systems under dwell fatigue conditions. Journal of Engineering for Gas Turbines and Power, 2012, 134(12): 122501.
    [6] Ahmadzadeh F. Mean residual life estimation considering operating environment. Proceedings of the 2012 International Conference on Quality, Reliability, Infocom Technology and Industrial Technology Management. 2012.
    [7] Si XS, Wang WB, Chen MY, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution. European Journal of Operational Research, 2013, 226(1): 53–66.
    [8] 牟园伟, 陆山. 基于材料微观特性的涡轮盘疲劳裂纹萌生寿命数值仿真. 航空学报, 2013, 34(2): 282–290.
    [9] Swanson DC, Spencer JM, Arzoumanian SH. Prognostic modelling of crack growth in a tensioned steel band. Mechanical Systems and Signal Processing, 2000, 14(5): 789–803.
    [10] Wang W, Scarf PA, Smith MAJ. On the application of a model of condition-based maintenance. Journal of the Operational Research Society, 2000, 51(11): 1218–1227.
    [11] Yan JH, Koç M, Lee J. A prognostic algorithm for machine performance assessment and its application. Production Planning & Control, 2004, 15(8): 796–801.
    [12] Kiddy JS. Remaining useful life prediction based on known usage data. Proceedings of SPIE 5046, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites II. San Diego: SPIE, 2003. 11–18.
    [13] Loutas TH, Roulias D, Georgoulas G. Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic E-support vectors regression. IEEE Transactions on Reliability, 2013, 62(4): 821–832.
    [14] Tian ZG. An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing, 2012, 23(2): 227–237.
    [15] Muneer A, Taib SM, Naseer S, et al. Data-driven deep learning-based attention mechanism for remaining useful life prediction: Case study application to turbofan engine analysis. Electronics, 2021, 10(20): 2453.
    [16] 张永, 龚众望, 郑英, 等. 工业设备的健康状态评估和退化趋势预测联合研究. 中国科学: 技术科学, 2022, 52(1): 180–197.
    [17] 周哲韬, 刘路, 宋晓, 等. 基于Transformer模型的滚动轴承剩余使用寿命预测方法. 北京航空航天大学学报, 2023, 49(2): 430–443.
    [18] 曹现刚, 陈瑞昊, 伍宇泽, 等. 基于CNN-XGBoost的采煤机健康状态评估. 煤炭技术, 2022, 41(11): 173–176.
    [19] 张明涛. 工业设备预测性维护系统. 新型工业化, 2021, 11(3): 156–157.
    [20] 胡晓轩, 朱琦, 杨山林, 等. 船舶车间焊接机器人智能预测性维护系统. 船舶工程, 2021, 43(S1): 415–419.
    [21] 房琦, 李震, 吴江. 污水处理厂关键设备预测性维护系统的开发及应用. 给水排水, 2021, 47(4): 132–136.
    [22] 张旭辉, 鞠佳杉, 杨文娟, 等. 基于数字孪生的复杂矿用设备预测性维护系统. 工程设计学报, 2022, 29(5): 643–650, 664.
    [23] 高燕军, 刘毅, 杨东. 设备在线检测与预测性维护系统在骆驼山选煤厂的应用. 工矿自动化, 2023, 49(S1): 79–81.
    [24] 冯吉, 万强, 王艺潼, 等. 基于大数据的总装设备的预测性维护系统. 上海汽车, 2020(10): 12–15.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡健,刘春辉,王锦,周子凯,乔百友.面向选矿设备的预测性维护系统.计算机系统应用,2024,33(10):75-86

复制
分享
文章指标
  • 点击次数:267
  • 下载次数: 1274
  • HTML阅读次数: 801
  • 引用次数: 0
历史
  • 收稿日期:2024-02-24
  • 最后修改日期:2024-05-06
  • 在线发布日期: 2024-08-28
文章二维码
您是第11371946位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号