摘要:单细胞 RNA测序技术(single-cell RNA sequencing, scRNA-seq)在单个细胞的水平上对转录组进行高通量测序分析, 其核心应用是识别具有不同功能的细胞亚群, 通常基于细胞聚类来完成. 然而, scRNA-seq 数据高维度、高噪声、高稀疏的特点使得聚类充满挑战. 常规的聚类方法表现不佳, 现有的单细胞聚类方法也大多只考虑基因的表达模式, 而忽略了细胞之间的关系. 针对这些问题, 提出了一个联合对比学习与图神经网络的自优化单细胞聚类方法(self-optimizing single-cell clustering with contrastive learning and graph neural network, scCLG). 该方法采用自编码器来学习细胞的特征分布. 首先构建细胞-基因图, 使用图神经网络进行编码, 以有效利用细胞之间的关系信息. 通过子图采样和特征掩码获取增广视图用于对比学习, 进一步优化特征表示. 最后使用自优化的策略将聚类模块和特征模块联合训练, 不断优化特征表示和聚类中心, 实现更准确的聚类. 在10个真实的scRNA-seq数据集上的实验表明, scCLG能够学习到细胞特征的良好表示, 在聚类精度上全面优于其他方法.