摘要:在城市道路部署前估计路网的交通流量极具挑战性, 为了解决这个难题, 提出了一种新的条件城市交通生成对抗网络(Curb-GAN)模型, 利用条件生成对抗网络(CGAN)生成城市交通流量数据. 首先, 把路网各节点的距离关系和外部特征信息作为条件处理, 来控制生成结果; 其次, 利用图卷积网络(GCN)捕获路网的空间自相关性, 利用自注意力机制(SA)和门控循环单元(GRU)捕获不同时隙交通的时间依赖性; 最后, 由训练好的生成器生成交通流量数据. 在两个真实时空数据集上的大量实验表明, Curb-GAN模型的估计精度优于主要的基线方法, 并且可以产生更有意义的估计.