基于概率感知模型的线性无线传感网络可靠性分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省第二批揭榜挂帅(科技攻关专项)(2022JH1/10800085); 辽宁省自然科学基金(面上)项目(2022-MS-438); 辽宁省教育厅基本科研项目服务地方项目(LJKFZ20220184)


Reliability Analysis of Linear Wireless Sensor Network Based on Probabilistic Sensing Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    线性无线传感网络(linear wireless sensor network, LWSN)广泛应用于监测铁路、天然气管道等线性拓扑的关键基础设施, 其可靠性至关重要, 其中覆盖率是衡量可靠性的重要指标. 目前在评估LWSN覆盖率的方法大多采用0/1圆盘感知模型, 但实际中传感器的监测可靠性随着覆盖半径增加呈概率分布. 因此, 提出了一种基于概率感知模型的可靠性分析方法, 该模型可根据传感器的物理参数计算其有效感知范围, 进而提升了评估的准确性. 为减小系统状态空间的大小, 采用二元决策树构造LWSN的系统状态集合. 本文假设节点的故障概率符合Weibull分布并针对不同通信半径和感知范围进行仿真实验, 结果表明该方法可以有效地对LWSN的可靠性进行评估, 评估准确率相比0/1圆盘感知模型更精准.

    Abstract:

    Linear wireless sensor network (LWSN) is widely used to monitor key infrastructure in linear topology such as railways and natural gas pipelines, whose reliability is very important, and coverage is an important indicator to measure reliability. Currently, most methods for evaluating the LWSN coverage are based on a 0/1 disk sensing model, but in practice, the monitoring reliability of sensors follows a probability distribution with the increase of coverage radius. Therefore, a reliability analysis method based on a probabilistic sensing model is proposed, which can calculate the effective sensing range based on the physical parameters of sensors, thereby improving the accuracy of evaluation. To reduce the size of the system state space, a binary decision tree is used to construct the LWSN system state set. In this study, the failure probability of nodes is assumed to follow a Weibull distribution, and simulation experiments are conducted for different communication radii and sensing ranges. The results show that this method can effectively evaluate the reliability of LWSN, and the evaluation accuracy is more accurate than the 0/1 disk sensing model.

    参考文献
    相似文献
    引证文献
引用本文

李兆,贾正锋,杨海波.基于概率感知模型的线性无线传感网络可靠性分析.计算机系统应用,2024,33(9):183-191

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-28
  • 最后修改日期:2024-02-26
  • 录用日期:
  • 在线发布日期: 2024-07-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号