变邻域模拟退火算法在农村生活垃圾收运中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市研究生科研创新项目(CYS23520); 绿色物流智能技术重庆市重点实验室项目


Application of Variable Neighborhood Simulated Annealing Algorithm in Rural Household Garbage Collection and Transportation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对农村地区生活垃圾的产生特点, 考虑生活垃圾分类下的可变收运周期, 构建以最小化运输成本、车辆延迟到达惩罚成本和环境惩罚成本的多目标生活垃圾收运路径优化模型. 利用随机选择法、最近邻法相结合以重构解空间, 使用带变邻域的模拟退火算法对模型进行求解. 通过算例仿真及对比分析可知, 本文模型和算法在收运总成本和总距离方面有较好的优化效果, 均优于经典模拟退火算法和变邻域搜索算法的最优解. 相较于传统的固定周期收运方案, 本文所建立模型减去了环境污染成本, 同时在总成本上改进超110.4%, 可较好地解决农村地区垃圾收运路径优化问题.

    Abstract:

    According to the characteristics of rural household garbage generation, a multi-objective garbage collection and transportation path optimization model is constructed to minimize transportation cost, vehicle delay penalty cost, and environmental penalty cost, considering the variable collection and transportation cycle of domestic waste classification. The solution space is reconstructed with the combination of random choice method and nearest neighbor method, and the simulated annealing algorithm with variable neighborhood is used to solve the model. Through case simulation and comparative analysis, it can be seen that the proposed model and algorithm have good optimization results in terms of total collection and transportation cost and total distance. Based on the analysis, the results in this study are also superior to the optimal solutions of the classical simulated annealing algorithm and variable neighborhood search algorithm. Compared with the traditional fixed cycle collection and transportation scheme, the model established in this study subtracts the environmental pollution cost and modifies the total cost by more than 110.4%, which can effectively solve the problem of garbage collection and transportation path optimization in rural areas.

    参考文献
    相似文献
    引证文献
引用本文

艾玉.变邻域模拟退火算法在农村生活垃圾收运中的应用.计算机系统应用,2024,33(9):192-200

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-19
  • 最后修改日期:2024-04-19
  • 录用日期:
  • 在线发布日期: 2024-07-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号