融合注意力机制和二次特征提取的ResNet小样本农作物病虫害识别
作者:
基金项目:

国家自然科学基金(62072251); 江苏省自然科学基金(BK2007195.4); 南京信息工程大学创新专项(XJDC202310300351)


ResNet Few-shot Crop Pest and Disease Recognition Incorporating Attention Mechanism and Secondary Feature Extraction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对传统机器学习方法对于小样本和多类别的农作物叶片病虫害识别效果和时间不理想的问题, 本文利用改进的ResNet模型来实现农作物病害识别. 通过加入dropout层、激活函数、最大池化层和注意力机制来提高模型的鲁棒性、特征捕捉能力、实现了用较低的模型参数量来提高病虫害识别的准确率. 首先对从公共数据集 Plant Village获取的图像进行预处理和增强, 将ReLU激活函数替换为PReLU, 解决ReLU函数在小于0部分神经元坏死的问题; 然后在全局平均池化层之前加入dropout层, 设置合理的阈值, 有效避免过拟合现象的发生, 增强模型的鲁棒性; 此外, 在dropout与全局平均池化层之间加入最大池化层, 不仅能扩大神经元的感受野, 还能帮助模型获取局部病虫害的最显著特征, 减小图片背景的噪声影响, 实现二次特征提取; 最后嵌入CBAM注意力机制, 使模型自动学习输入特征图中最重要的通道信息, 并对其进行通道与空间之间加权, 从而更好地捕捉图像中的语义信息. 实验结果表明, 改进后的模型对测试集识别准确度达99.15%, 模型参数量仅为9.13M, 与Xception、InceptionV3、原ResNet等模型相比, 准确率分别超过了1.01, 0.68, 0.59个百分点, 降低了模型参数量, 为农作物病虫害识别提供了一种先进的深度学习方法.

    Abstract:

    Aiming at the problem that traditional machine learning methods are not ideal in terms of effect and time for identifying crop leaf pests and diseases with small samples and multiple categories, this study utilizes an improved ResNet model to realize the recognition of crop pests and diseases. By adding dropout layers, activation function, maximum pooling layer, and attention mechanism, the robustness and feature capturing ability of the model is improved, and the accuracy of pest and disease recognition with a lower number of model parameters is achieved. Firstly, the images obtained from the public dataset Plant Village are preprocessed and enhanced, and the ReLU activation function is replaced by PReLU to solve the problem of neuron necrosis in the part of the ReLU function less than 0. Then, a dropout layer is added before the global average pooling layer, and a reasonable threshold value is set to effectively avoid the occurrence of overfitting and to enhance the robustness of the model. In addition, a maximum pooling layer is added between the dropout and global average pooling layer, which not only expands the receptive field of neurons, but also helps the model to obtain the most significant features of local pests and diseases, reduce the noise effect from image background, and realize secondary feature extraction. Finally, the CBAM attention mechanism is embedded, which makes the model automatically learn the most important channel information in the input feature maps and weight it between the channel and space to better capture the semantic information in the images. Experimental results show that the improved model recognizes the test set with an accuracy of 99.15% with a model parameter count of only 9.13M, which exceeds the accuracy of Xception, InceptionV3, and the original ResNet by 1.01, 0.68, and 0.59 percentage points, respectively, and reduces the model parameter count. This provides a state-of-the-art crop disease recognition deep learning method.

    参考文献
    [1] 满中合. 果树病害发生特点及综合防治策略探究. 农业开发与装备, 2021, 27(5): 72–73.
    [2] 金瑛, 叶飒, 李洪磊. 基于ResNet-50深度卷积网络的果树病害智能诊断模型研究. 农业图书情报学报, 2021, 33(4): 58–67.
    [3] 吴冀豪, 常玉祥, 汪宇玲, 等. 基于机器学习的果蔬识别研究综述. 机器人技术与应用, 2022(4): 29–31.
    [4] 赵明月, 欧阳芳, 张永生, 等. 2000–2010年我国小麦病虫害发生与为害特征分析. 生物灾害科学, 2015, 38(1): 1–6.
    [5] 赵鹏超, 戚大伟. 基于卷积神经网络和树叶纹理的树种识别研究. 森林工程, 2018, 34(1): 56–59.
    [6] 汪泉, 宋文龙, 张怡卓, 等. 基于改进VGG16网络的机载高光谱针叶树种分类研究. 森林工程, 2021, 37(3): 79–87.
    [7] 王春山, 周冀, 吴华瑞, 等. 改进Multi-scale ResNet的蔬菜叶部病害识别. 农业工程学报, 2020, 36(20): 209–217.
    [8] 肖小梅, 杨红云, 易文龙, 等. 改进的Alexnet模型在水稻害虫图像识别中的应用. 科学技术与工程, 2021, 21(22): 9447–9454.
    [9] 何欣, 李书琴, 刘斌. 基于多尺度残差神经网络的葡萄叶片病害识别. 计算机工程, 2021, 47(5): 285–291, 300.
    [10] 黄平, 闭吕庆, 莫燕斌, 等. 基于多尺度特征融合的柑橘病虫害图像识别方法. 无线电工程, 2022, 52(3): 407–416.
    [11] 郭玥秀, 杨伟, 刘琦, 等. 残差网络研究综述. 计算机应用研究, 2020, 37(5): 1292–1297.
    [12] 刘阳, 高国琴. 采用改进的SqueezeNet模型识别多类叶片病害. 农业工程学报, 2021, 37(2): 187–195.
    [13] 曹跃腾, 朱学岩, 赵燕东, 等. 基于改进ResNet的植物叶片病虫害识别. 中国农机化学报, 2021, 42(12): 175–181.
    [14] 吴华瑞. 基于深度残差网络的番茄叶片病害识别方法. 智慧农业, 2019, 1(4): 42–49.
    [15] 蔡汉明, 随玉腾, 张镇, 等. 基于深度可分离卷积神经网络的农作物病害识别方法. 安徽农业科学, 2019, 47(11): 244–246, 252.
    [16] Tuncer A. Cost-optimized hybrid convolutional neural networks for detection of plant leaf diseases. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(8): 8625–8636.
    [17] 黄建平, 陈镜旭, 李克新, 等. 基于神经结构搜索的多种植物叶片病害识别. 农业工程学报, 2020, 36(16): 166–173.
    [18] Tsuchiya H, Fukui S, Iwahori Y, et al. A method of data augmentation for classifying road damage considering influence on classification accuracy. Procedia Computer Science, 2019, 159: 1449–1458.
    [19] 刘飞, 高红艳, 卫泽刚, 等. 基于Res-Net深度特征的SAR图像目标识别方法. 液晶与显示, 2021, 36(4): 624–631.
    [20] 柯逍, 杜明智. 多尺度特征融合与极限学习机的玉米种子检测. 中国图象图形学报, 2016, 21(1): 24–38.
    [21] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778.
    [22] Al Rabbani Alif M, Ahmed S, Abul Hasan M. Isolated Bangla handwritten character recognition with convolutional neural network. Proceedings of the 20th International Conference of Computer and Information Technology. Dhaka: IEEE, 2017. 1–6.
    [23] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84–90.
    [24] Weiss K, Khoshgoftaar TM, Wang DD. A survey of transfer learning. Journal of Big Data, 2016, 3(1): 9.
    [25] Wei QJ, Wang WB. Research on image retrieval using deep convolutional neural network combining L1 regularization and PReLU activation function. IOP Conference Series: Earth and Environmental Science, 2017, 69: 012156.
    [26] 刘小文, 郭大波, 李聪. 卷积神经网络中激活函数的一种改进. 测试技术学报, 2019, 33(2): 121–125.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪志立,王定成,曹蓉,郑梦丽,刘亚鹏,卓欣.融合注意力机制和二次特征提取的ResNet小样本农作物病虫害识别.计算机系统应用,2024,33(9):208-215

复制
分享
文章指标
  • 点击次数:325
  • 下载次数: 1123
  • HTML阅读次数: 830
  • 引用次数: 0
历史
  • 收稿日期:2024-03-23
  • 最后修改日期:2024-04-16
  • 在线发布日期: 2024-07-26
文章二维码
您是第11462648位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号