摘要:少样本语义分割是在具有少量标注样本的查询图像的条件下, 对潜在对象类别进行分割的计算机视觉任务. 然而, 现有方法仍然存在两个问题, 这对它们构成了挑战. 首先是原型偏差问题, 这导致原型具有较少的前景目标信息, 难以模拟真实的类别统计信息. 另一个是特征破坏问题, 这意味着模型只关注当前类别而不关注潜在类别. 本文提出了一个基于对比原型以及背景挖掘的新网络. 该网络主要思想是使模型学习更具代表性的原型, 并从背景中识别潜在类别. 具体而言, 特定类学习分支构建了一个大且一致的原型字典, 然后使用InfoNCE损失使原型更具区分性. 另一方面, 背景挖掘分支初始化背景原型, 并使用构建的背景原型与字典之间的注意力机制来挖掘潜在类别. 在PASCAL-5i和COCO-20i数据集上的实验证明模型有优秀的性能. 在使用ResNet-50网络的1-shot设置下, 达到了64.9%和44.2%, 相较于基准模型分别提升了4.0%和1.9%.