降质感知的小波变换水下图像增强网络
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

宁夏科技创新领军人才计划 (2022GKLRLX03); 国家自然科学基金 (12202219)


Degradation-aware Underwater Image Enhancement Network Based on Wavelet Transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有水下图像增强算法不能感知降质, 易丢失细节, 无法有效纠正色偏等问题, 提出了降质感知的小波变换水下图像增强网络模型. 该模型主要包含对比学习的降质表征提取网络和多级小波变换的水下图像增强网络. 首先, 降质表征提取网络利用编码器和对比学习的方法, 从每张水下图像中提取特有的降质表征; 随后, 以多级小波变换增强算法为指导思想, 构建三级小波变换模块, 旨在从频率域上实施多尺度的细节和颜色增强; 最后, 构建基于三级小波变换模块的多级小波变换增强网络, 并将提取的降质表征引入到该网络中, 以便在感知降质信息后, 更好地实施多级小波变换增强. 实验结果表明, 本算法较已有算法具有更强的颜色校正, 细节增强能力, 增强结果在结构相似性指标上提升16%, 峰值信噪比指标上提升9%, 水下图像质量指标上提升14%, 能用于水下图像增强任务.

    Abstract:

    To solve the problems of poor degradation awareness, easy detail loss, and ineffective color cast correction caused by existing underwater image enhancement algorithms, this study proposes a degradation-aware underwater image enhancement network based on wavelet transform. This model mainly contains a degradation representation extraction network based on contrastive learning and an underwater image enhancement network based on multiple-level wavelet transform. Firstly, the degradation representation extraction network uses an encoder and contrastive learning method to extract unique degradation representations from each underwater image. Secondly, a three-level wavelet transform module is built under the principle of multi-level wavelet transform enhancement algorithm, aiming to conduct multi-scale detail and color enhancement in the frequency domain. Lastly, a multiple-level wavelet transform enhancement network is built with three-level wavelet transform modules, and the extracted degradation representations are introduced into this network for better implementing multiple-level wavelet transform enhancement with perceived degradation information. Experimental results show that the proposed algorithm outperforms existing algorithms in color correction and detail enhancement in terms of sharply enhanced results, i.e. structural similarity is improved by 16%, peak signal-to-noise ratio is improved by 9%, and underwater image quality is improved by 14%, making it suitable for underwater image enhancement tasks.

    参考文献
    相似文献
    引证文献
引用本文

刘祎恒,邓箴.降质感知的小波变换水下图像增强网络.计算机系统应用,2024,33(9):201-207

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-14
  • 最后修改日期:2024-04-10
  • 录用日期:
  • 在线发布日期: 2024-07-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号